We present extensive spectroscopic observations of supernova remnant (SNR) S 147 collected with the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The spectra were care- fully sky-subtracted t...We present extensive spectroscopic observations of supernova remnant (SNR) S 147 collected with the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The spectra were care- fully sky-subtracted taking into account the complex filamentary structure of S 147. We have utilized all available LAMOST spectra toward S 147, including sky and stellar spectra. By measuring the prominent optical emission lines including Ha, [NII] )λ 6584 and [S n] λλ6717, 6731, we present maps of radial velocity and line intensity ratio covering the whole nebula of S 147 with unprecedented detail. The maps spatially correlate well with the complex filamentary structure of S147. For the central 2° of S147, the radial velocity varies from - 100 to 100 krn s^-1 and has peaks between - 0 and 10 km s^-1. The intensity ratios of Hα/[S n)λλ6717,6731, [Sn] λ 6717/λ 6731 and Ha/IN Hα/λ 6584 peak at about 0.77, 1.35 and 1.48, respectively, with a scatter of 0.17, 0.19 and 0.37, respectively. The intensity ratios are consistent with the literature values. However, the range of variations of line intensity ratios estimated here, which are representative of the whole nebula, is larger than previously estimated.展开更多
LAMOST-MRS-B is one of the sub-surveys of LAMOST medium-resolution(R~7500)spectroscopic survey.It aims at studying the statistical properties(e.g.,binary fraction,orbital period distribution,mass ratio distribution)of...LAMOST-MRS-B is one of the sub-surveys of LAMOST medium-resolution(R~7500)spectroscopic survey.It aims at studying the statistical properties(e.g.,binary fraction,orbital period distribution,mass ratio distribution)of binary stars and exotic stars.We intend to observe about 30000 stars(10 mag≤G<14.5 mag)with at least 10 visits in five years.We first planned to observe 25 plates around the galactic plane in 2018.Then the plates were reduced to 12 in 2019 because of the limitation of observation.At the same time,two new plates located at the high galactic latitude were added to explore binary properties influenced by the different environments.In this survey project,we set the identified exotic and low-metallicity stars with the highest observation priorities.For the rest of the selected stars,we gave the higher priority to the relatively brighter stars in order to obtain high quality spectra as many as possible.Spectra of49129 stars have been obtained in LAMOST-MRS-B field and released in DR8,of which 28828 and 3375 stars have been visited more than twice and ten times with SNR≥10,respectively.Most of the sources are B-,A-,and F-type stars with-0.6<[Fe/H]<0.4 dex.We also obtain 347 identified variable and exotic stars and about 250 stars with[Fe/H]<-1 dex.We measure radial velocities(RVs)by using 892233 spectra of the stars.The uncertainties of RV achieve about 1 km·s^(-1)and 10 km·s^(-1)for 95%of late-and early-type stars,respectively.The datasets presented in this paper are available at http://www.doi.org/10.57760/sciencedb.j00113.00035.展开更多
The redshift range from 2.2 to 3 is known as the 'redshift desert' of quasars because quasars with redshifts in this range have similar optical colors as normal stars and are thus difficult to find in optical sky su...The redshift range from 2.2 to 3 is known as the 'redshift desert' of quasars because quasars with redshifts in this range have similar optical colors as normal stars and are thus difficult to find in optical sky surveys. A quasar candidate, SDSS J085543.40-001517.7, which was selected by a recently proposed criterion involving near-IR Y - K and optical g - z colors, was identified spectroscopically as a new quasar with a redshift of 2.427 by the Guoshoujing Telescope (LAMOST) commissioning observation in 2009 December and confirmed by the observation made with the NAOC/Xinglong 2.16 m telescope in 2010 March. This quasar was not identified in the SDSS spectroscopic survey. Comparing with other SDSS quasars, we found that this new quasar, with an i magnitude of 16.44, is apparently the brightest one in the redshift range from 2.3 to 2.7. From its spectral properties, we derived its central black hole mass to be (1.4 - 3.9) × 10^110 M⊙ and its bolometric luminosity to be 3.7 × 10^48 erg s^-1, which indicates that this new quasar is intrinsically very bright and belongs to the class of the most luminous quasars in the universe. Our identification supports the notion that quasars in the redshift desert can be found by the quasar selection criterion involving the near-IR colors. More missing quasars are expected to be uncovered by future LAMOST spectroscopic surveys, which is important to the study of the cosmological evolution of quasars at redshifts higher than 2.2.展开更多
Planetary nebulae (PNe) are good tracers of the stellar populations, chemical composition and dynamics of their host galaxies. This paper reports the discovery of new PNe in the outskirts of the Andromeda Galaxy (...Planetary nebulae (PNe) are good tracers of the stellar populations, chemical composition and dynamics of their host galaxies. This paper reports the discovery of new PNe in the outskirts of the Andromeda Galaxy (M31) with the Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope-LAMOST) during its early commissioning phase. In total, 36 candidates selected from SDSS photometry are confirmed in terms of their PN nature, including 17 new discoveries and another 19 previously known emission line objects. Their positions, spectra, radial velocities and m5007 magnitudes are presented. We discuss the potential for detecting more PNe in M 31 with GSJT's multi-object spectroscopy and the related applications in studies of the dynamics and chemistry of M 31 and its assemblage history.展开更多
We present preliminary analyses of spectra of quasar candidates in two Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope - LAMOST) test fields near M 31 where ...We present preliminary analyses of spectra of quasar candidates in two Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope - LAMOST) test fields near M 31 where one is close to the optical center of the disk and the other is towards the northeastern outskirts of the halo, obtained during the early stage of the GSJT commissioning in the last season of 2009. Both fields contain background low-redshift quasar candidates selected from the SDSS photometry. In total, 14 new quasars with redshifts up to 2 and i magnitudes between 16.7 and 19.2, are discovered, including 7 within the 2.5° central region of M 31. We briefly discuss the potential applications of these newly discovered bright quasars.展开更多
We report the discovery of eight new quasars in one extragalactic field (a five-degree field centered at RA=08^h58^m08.2^s, Dec=01°32′29.7″) with the Guoshoujing Telescope (LAMOST) commissioning observation...We report the discovery of eight new quasars in one extragalactic field (a five-degree field centered at RA=08^h58^m08.2^s, Dec=01°32′29.7″) with the Guoshoujing Telescope (LAMOST) commissioning observations made on 2009 December 18. These quasars, with i magnitudes from 16.44 to 19.34 and redshifts from 0.898 to 2.773, were not identified in the SDSS spectroscopic survey, though six of them with redshifts less than 2.5 were selected as quasar targets in SDSS. Except for one source without near-IR Y-band data, seven of these eight new quasars satisfy a newly proposed quasar selection criterion involving both near-IR and optical colors. Two of them were found in the 'redshift desert' for quasars (z from 2.2 to 3), indicating that the new criterion is efficient for uncovering missing quasars with similar optical colors to stars. Although LAMOST encountered some problems during the commissioning observations, we were still able to identify 38 other known SDSS quasars in this field, with i magnitudes from 16.24 to 19.10 and redshifts from 0.297 to 4.512. Our identifications imply that a substantial fraction of quasars may be miss- ing in previous quasar surveys. The implication of our results to the future LAMOST quasar survey is discussed.展开更多
We introduce a method of subtracting geocoronal Hαemissions from the spectra of LAMOST medium-resolution spectral survey of Galactic nebulae(LAMOST-MRS-N).The flux ratios of the Hαsky line to the adjacent OHλ6554 s...We introduce a method of subtracting geocoronal Hαemissions from the spectra of LAMOST medium-resolution spectral survey of Galactic nebulae(LAMOST-MRS-N).The flux ratios of the Hαsky line to the adjacent OHλ6554 single line do not show a pattern or gradient distribution in a plate.More interestingly,the ratio is well correlated to solar altitude,which is the angle of the Sun relative to the Earth’s horizon.It is found that the ratio decreases from 0.8 to 0.2 with the decreasing solar altitude from–17 to–73 degree.Based on this relation,which is described by a linear function,we can construct the Hαsky component and subtract it from the science spectrum.This method has been applied to the LAMOST-MRSN data,and the contamination level of the Hαsky to nebula is reduced from 40%to less than 10%.The new generated spectra will significantly improve the accuracy of the classifications and the measurements of physical parameters of Galactic nebulae.展开更多
Using a sample of over 70 000 red clump(RC) stars with 5%–10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center(LSS-GAC), we study the radial and vertical gradients of th...Using a sample of over 70 000 red clump(RC) stars with 5%–10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center(LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z | ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle(7 ≤ RGC ≤ 11.5 kpc), the radial gradient has a moderately steep, negative slope of-0.08 dex kpc-1near the midplane(|Z | 〈 0.1 kpc), and the slope flattens with increasing |Z |. In the outer disk(11.5 〈 RGC ≤ 14 kpc), the radial gradients have an essentially constant, much less steep slope of-0.01 dex kpc-1at all heights above the plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk(0 ≤ |Z | ≤ 1 kpc)is found to flatten with RGC quicker than that of the upper disk(1 〈 |Z | ≤ 3 kpc).Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk(e.g. gas flows,radial migration, and internal and external perturbations).展开更多
Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk...Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the disk, and the rate of gas inflow near the solar neighborhood reaches a maximum around a lookback time of 7–8 Gyr.The transition between the two phases occurs around a lookback time between 8 and11 Gyr. The two phases may be responsible for the formation of the Milky Way's thick and thin disks, respectively. Also, as a consequence, we recommend that stellar age is a natural, physical criterion to distinguish stars from the thin and thick disks. From an epoch earlier than 11 Gyr to one between 8 and 11 Gyr, there is an abrupt, significant change in magnitude of both the radial and vertical metallicity gradients, suggesting that stellar radial migration is unlikely to play an important role in the formation of the thick disk.展开更多
We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ~2 kpc, a l...We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ~2 kpc, a local subset of the global sample consisting of ~5400 stars within 150 pc, and an anti-center sample containing ~4400AFGK dwarfs and red clump stars within windows a few degrees wide centered on the Galactic Anti-center. The global sample is used to construct a three-dimensional map of bulk motions of the Galactic disk from the solar vicinity out to ~2 kpc with a spatial resolution of ~250 pc. Typical values of the radial and vertical components of bulk motion range from-15 km s-1to 15 km s-1; in contrast, the lag behind the circular motion dominates the azimuthal component by up to ~15 km s-1. The map reveals spatially coherent, kpc-scale stellar flows in the disk, with typical velocities of a few tens of km s-1. Bending- and breathing-mode perturbations are clearly visible,and vary smoothly across the disk plane. Our data also reveal higher-order perturbations, such as breaks and ripples, in the profiles of vertical motion versus height. From the local sample, we find that stars from different populations exhibit very different patterns of bulk motion. Finally, the anti-center sample reveals a number of peaks in stellar number density in the line-of-sight velocity versus distance distribution, with the nearer ones apparently related to the known moving groups. The "velocity bifurcation" reported by Liu et al. at Galactocentric radii 10–11 kpc is confirmed. However,just beyond this distance, our data also reveal a new triple-peaked structure.展开更多
Asteroseismology allows for deriving precise values of the surface gravity of stars. The accurate asteroseismic determinations now available for the large number of stars in the Kepler fields can be used to check and ...Asteroseismology allows for deriving precise values of the surface gravity of stars. The accurate asteroseismic determinations now available for the large number of stars in the Kepler fields can be used to check and calibrate surface gravities that are currently being obtained spectroscopically for a huge number of stars targeted by large-scale spectroscopic surveys, such as the on-going Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Galactic survey. The LAMOST spectral surveys have obtained a large number of stellar spectra in the Kepler fields. Stellar atmospheric parameters of those stars have been determined with the LAMOST Stellar Parameter Pipeline at Peking University (LSP3), by template matching with the MILES empirical spectral library. In the current work, we compare surface gravities yielded by LSP3 with those of two asteroseismic samples-- the largest Kepler asteroseismic sample and the most accurate Kepler asteroseismic sample. We find that LSP3 surface gravities are in good agreement with asteroseismic values of Hekker et al., with a dispersion of -0.2 dex. Except for a few cases, asteroseismic surface gravities ofHuber et al. and LSP3 spectroscopic values agree for a wide range of surface gravities. However, some patterns in the differences can be identified upon close inspection. Potential ways to further improve the LSP3 spectroscopic estimation of stellar atmospheric parameters in the near future are briefly discussed. The effects of effective temperature and metallicity on asteroseismic determinations of surface gravities for giant stars are also discussed.展开更多
Since Sep.2018,LAMOST has started the medium-resolution(R~7500)spectral survey(MRS).We proposed the spectral survey of Galactic nebulae,including HⅡregions,HH objects,supernova remnants,planetary nebulae and the spec...Since Sep.2018,LAMOST has started the medium-resolution(R~7500)spectral survey(MRS).We proposed the spectral survey of Galactic nebulae,including HⅡregions,HH objects,supernova remnants,planetary nebulae and the special stars with MRS(LAMOST MRS-N).LAMOST MRS-N covers about 1700 square degrees of the northern Galactic plane within 40°<l<215°and-5°<b<5°.In this 5-year survey,we plan to observe about 500 thousand nebulae spectra.According to the commissioning observations,the nebulae spectra can provide precise radial velocity with uncertainty less than 1 km s^(-1).These high-precision spectral data are of great significance to our understanding of star formation and evolution.展开更多
The spectral observations and analysis for the W80 region are presented by using the data of Medium-Resolution Spectroscopic Survey of Nebulae(MRS-N) with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(...The spectral observations and analysis for the W80 region are presented by using the data of Medium-Resolution Spectroscopic Survey of Nebulae(MRS-N) with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST).A total of 2982 high-quality nebular spectra have been obtained in the 20 square degree field of view which covers the W80 complex,and the largest sample of spectral data has been established for the first time.The relative intensities,radial velocities(RVs),and full widths at half maximum(FWHMs) are measured with the high spectral resolution of LAMOST MRS-N,for Ha λ6563?,[NⅡ] λλ6548 A,6584 A,and [SⅡ] λλ6716A,6731 A emission lines.In the field of view of the whole W80 region,the strongest line emissions are found to be consistent with the bright nebulae NGC 7000,IC 5070,and LBN 391,and weak line emissions also exist in the Middle Region,where no bright nebulae are detected by the wide-band optical observations.The large-scale spectral observations of the W80 region reveal the systematic spatial variations of RVs and FWHMs,and several unique structural features.A "curved feature" to the east of NGC 7000,and a "jet feature" to the west of LBN 391 are detected to be showing larger RVs.A "wider FWHM region" is identified in the eastern part of NGC 7000.The variations of[S Ⅱ]/Ha ratios display a gradient from southwest to northeast in the NGC 7000 region,and manifest a ring shape around the "W80 bubble" ionized by an O-type star in L935.Further spectral and multi-band observations are guaranteed to investigate in detail the structural features.展开更多
We obtained seven spectra of the Be star V423 Aur on 2017 Dec.5 using the LAMOST MediumResolution Spectrograph with exposures from 600 to 1200 seconds.These spectra show the irregular Ha emission line profile variatio...We obtained seven spectra of the Be star V423 Aur on 2017 Dec.5 using the LAMOST MediumResolution Spectrograph with exposures from 600 to 1200 seconds.These spectra show the irregular Ha emission line profile variations(LPVs).In the seven spectra,from the 4 th to 7 th,the left part of Ha profile even shows excess.However,no variation can be seen from the follow-up observation of photometry by 1.26-m telescope and High-Resolution spectra by 2.16-m telescope.According to the High-Resolution spectra,we conclude that it is a B7 V type star with E(B-V)=0.709±0.036 and its vsini is221.8 km s-1.The short-term Ha LPVs could be explained as a result of the transient ejection of matter from rotating disk or shell around V423 Aur.展开更多
Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of...Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multiepoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions,are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with Teff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.展开更多
The Large sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) medium-resolution spectral survey of Galactic Nebulae(MRS-N) has conducted for more than three years since 2018 September and observed more than190...The Large sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) medium-resolution spectral survey of Galactic Nebulae(MRS-N) has conducted for more than three years since 2018 September and observed more than190 thousand nebular spectra and 20 thousand stellar spectra.However,there is not yet a data processing pipeline for nebular spectra.To significantly improve the accuracy of nebulae classification and their physical parameters,we developed the MRS-N Pipeline.This article presented in detail each data processing step of the MRS-N Pipeline,such as removing cosmic rays,merging single exposure,fitting sky light emission lines,wavelength recalibration,subtracting skylight,measuring nebular parameters,creating catalogs and packing spectra.Finally,a description of the data products,including nebular spectra files and parameter catalogs,is provided.展开更多
Accurate radial velocity determinations of optical emission lines(i.e.,[NⅡ]λλ6548,6584,Hαand[SⅡ]λλ6717,6731)are very important for investigating the kinematic and dynamic properties of nebulae.The second stage ...Accurate radial velocity determinations of optical emission lines(i.e.,[NⅡ]λλ6548,6584,Hαand[SⅡ]λλ6717,6731)are very important for investigating the kinematic and dynamic properties of nebulae.The second stage survey program of Large sky Area Multi-Object fiber Spectroscopic Telescope(LAMOST)has started a sub-survey of nebulae(MRS-N)which will spectroscopically observe the optical emission lines of a large sample of nebulae near the Galactic plane.Until now,15 MRS-N plates have been observed from September 2017 to June 2019.Based on fitting the sky emission lines in the red band spectra of MRS-N,we investigate the precision of wavelength calibration and find there are systematic deviations of radial velocities(RVs)from~0.2 to 4 km s^(-1) for different plates.Especially for the plates obtained in March 2018,the systematic deviations of RVs can be as large as~4 km s^(-1),which then go down to~0.2-0.5 kms^(-1) at the end of 2018 and January 2019.An RV calibration function is proposed for these MRS-N plates,which can simultaneously and successfully calibrate the systematic deviations and improve the precision of RVs.展开更多
We conducted photometric and spectroscopic observations of Ross 15 in order to further study the flare properties of this less observed flare star.A total of 28 B-band flares are detected in 128 hr of photometric obse...We conducted photometric and spectroscopic observations of Ross 15 in order to further study the flare properties of this less observed flare star.A total of 28 B-band flares are detected in 128 hr of photometric observations,leading to a total flare rate of 0.22-0.040.04 h-1,more accurate than that provided by previous work.We give the energy range of the B-band flare(1029.5-1031.5 erg) and the flare frequency distribution(FFD) for the star.Within the same energy range,the FFD is lower than that of GJ 1243(M4)and YZ CMi(M4.5),roughly in the middle of those of three M5-type stars and higher than the average FFDs of spectral types> M6.We performed,for the first time for Ross 15,simultaneous high-cadence spectroscopic and photometric observations,resulting in detection of the most energetic flare in our sample.The intensity enhancements of the continuum and Balmer lines with significant correlations between them are detected during the flare,which is the same as those of other deeply studied flare stars with similar spectral type.展开更多
We present a catalog of 908 objects observed with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) in fields in the vicinity of M31 and M33, targeted as globular clusters(GCs) and candidates. ...We present a catalog of 908 objects observed with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) in fields in the vicinity of M31 and M33, targeted as globular clusters(GCs) and candidates. The targets include known GCs and candidates selected from the literature, as well as new candidates selected from the Sloan Digital Sky Survey(SDSS). Analysis shows that 356 of them are likely GCs with various confidence levels, while the remaining ones turn out to be background galaxies and quasars, stars and H II regions in M31 or foreground Galactic stars. The 356 likely GCs include 298 bona fide GCs and 26 candidates known in the literature. Three candidates, selected from the Revised Bologna Catalog of M31 GCs and candidates(RBC) and one possible cluster from Johnson et al., are confirmed to be bona fide clusters. We search for new GCs in the halo of the M31 among the new candidates selected from the SDSS photometry. Based on radial velocities yielded by LAMOST spectra and visual examination of the SDSS images, we find 28 objects, 5bona fide and 23 likely GCs. Among the five bona fide GCs, three have been recently discovered independently by others, and the remaining 25 are our new identifications,including two bona fide ones. The newly identified objects fall at projected distances ranging from 13 to 265 kpc from M31. Of the two newly discovered bona fide GCs,one is located near M33, probably a GC belonging to M33. The other bona fide GC falls on the Giant Stream with a projected distance of 78 kpc from M31. Of the 23 newly identified likely GCs, one has a projected distance of about 265 kpc from M31 and could be an intergalactic cluster.展开更多
基金supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1531244)the National Key Basic Research Program of China (2014CB845700)+4 种基金support from the Young Researcher Grant of National Astronomical Observatories, Chinese Academy of Sciencessupported by Special Funding for Advanced Users, budgeted and administrated by the Center for Astronomical MegaScience, Chinese Academy of Sciences (CAMS)National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform CommissionNational Astronomical Observatories, Chinese Academy of Sciences
文摘We present extensive spectroscopic observations of supernova remnant (SNR) S 147 collected with the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The spectra were care- fully sky-subtracted taking into account the complex filamentary structure of S 147. We have utilized all available LAMOST spectra toward S 147, including sky and stellar spectra. By measuring the prominent optical emission lines including Ha, [NII] )λ 6584 and [S n] λλ6717, 6731, we present maps of radial velocity and line intensity ratio covering the whole nebula of S 147 with unprecedented detail. The maps spatially correlate well with the complex filamentary structure of S147. For the central 2° of S147, the radial velocity varies from - 100 to 100 krn s^-1 and has peaks between - 0 and 10 km s^-1. The intensity ratios of Hα/[S n)λλ6717,6731, [Sn] λ 6717/λ 6731 and Ha/IN Hα/λ 6584 peak at about 0.77, 1.35 and 1.48, respectively, with a scatter of 0.17, 0.19 and 0.37, respectively. The intensity ratios are consistent with the literature values. However, the range of variations of line intensity ratios estimated here, which are representative of the whole nebula, is larger than previously estimated.
基金supported by the National Natural Science Foundation of China(Grant Nos.12073070,12173081,12090043,11873016,and 12173013)Yunnan Fundamental Research Project(Grant No.202101AV070001)+5 种基金the Science Research Grants from The China Manned Space Project(Grant Nos.CMS-CSST2021-A08,CMS-CSST-2021-A10,and CMS-CSST-2021-B05)CAS‘Light of West China’ProgramGuoshoujing Telescope(the Large Sky Area MultiObject Fiber Spectroscopic Telescope LAMOST)is a National Major Scientific Project built by the Chinese Academy of Sciences.Funding for the project has been provided by the National Development and Reform Commission of ChinaFunding for the DPAC has been provided by national institutions,in particular the institutions participating in the Gaia Multilateral AgreementThe LAMOST fellowship is supported by Special Funding for Advanced Users,budgeted and administrated by Center for Astronomical Mega-Science,Chinese Academy of Sciences(CAMS)supported by Cultivation Project for LAMOST Scientific Payoff and Research Achievement of CAMS-CAS and Special Research Assistant Program of Chinese Academy of Sciences。
文摘LAMOST-MRS-B is one of the sub-surveys of LAMOST medium-resolution(R~7500)spectroscopic survey.It aims at studying the statistical properties(e.g.,binary fraction,orbital period distribution,mass ratio distribution)of binary stars and exotic stars.We intend to observe about 30000 stars(10 mag≤G<14.5 mag)with at least 10 visits in five years.We first planned to observe 25 plates around the galactic plane in 2018.Then the plates were reduced to 12 in 2019 because of the limitation of observation.At the same time,two new plates located at the high galactic latitude were added to explore binary properties influenced by the different environments.In this survey project,we set the identified exotic and low-metallicity stars with the highest observation priorities.For the rest of the selected stars,we gave the higher priority to the relatively brighter stars in order to obtain high quality spectra as many as possible.Spectra of49129 stars have been obtained in LAMOST-MRS-B field and released in DR8,of which 28828 and 3375 stars have been visited more than twice and ten times with SNR≥10,respectively.Most of the sources are B-,A-,and F-type stars with-0.6<[Fe/H]<0.4 dex.We also obtain 347 identified variable and exotic stars and about 250 stars with[Fe/H]<-1 dex.We measure radial velocities(RVs)by using 892233 spectra of the stars.The uncertainties of RV achieve about 1 km·s^(-1)and 10 km·s^(-1)for 95%of late-and early-type stars,respectively.The datasets presented in this paper are available at http://www.doi.org/10.57760/sciencedb.j00113.00035.
基金supported by the National Natural Science Foundation of China (Grant No.10525313)the National Key Basic Research Science Foundation of China(2007CB815405)+1 种基金the Open Project Program of the Key Laboratory of Optical Astronomy,NAOC,CASThe Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST,now called the Guoshoujing Telescope) is a National Major Scientific Project built by the Chinese Academy of Sciences
文摘The redshift range from 2.2 to 3 is known as the 'redshift desert' of quasars because quasars with redshifts in this range have similar optical colors as normal stars and are thus difficult to find in optical sky surveys. A quasar candidate, SDSS J085543.40-001517.7, which was selected by a recently proposed criterion involving near-IR Y - K and optical g - z colors, was identified spectroscopically as a new quasar with a redshift of 2.427 by the Guoshoujing Telescope (LAMOST) commissioning observation in 2009 December and confirmed by the observation made with the NAOC/Xinglong 2.16 m telescope in 2010 March. This quasar was not identified in the SDSS spectroscopic survey. Comparing with other SDSS quasars, we found that this new quasar, with an i magnitude of 16.44, is apparently the brightest one in the redshift range from 2.3 to 2.7. From its spectral properties, we derived its central black hole mass to be (1.4 - 3.9) × 10^110 M⊙ and its bolometric luminosity to be 3.7 × 10^48 erg s^-1, which indicates that this new quasar is intrinsically very bright and belongs to the class of the most luminous quasars in the universe. Our identification supports the notion that quasars in the redshift desert can be found by the quasar selection criterion involving the near-IR colors. More missing quasars are expected to be uncovered by future LAMOST spectroscopic surveys, which is important to the study of the cosmological evolution of quasars at redshifts higher than 2.2.
基金The Guoshoujing Telescope(GSJT)is a National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform Commission
文摘Planetary nebulae (PNe) are good tracers of the stellar populations, chemical composition and dynamics of their host galaxies. This paper reports the discovery of new PNe in the outskirts of the Andromeda Galaxy (M31) with the Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope-LAMOST) during its early commissioning phase. In total, 36 candidates selected from SDSS photometry are confirmed in terms of their PN nature, including 17 new discoveries and another 19 previously known emission line objects. Their positions, spectra, radial velocities and m5007 magnitudes are presented. We discuss the potential for detecting more PNe in M 31 with GSJT's multi-object spectroscopy and the related applications in studies of the dynamics and chemistry of M 31 and its assemblage history.
基金The Guoshoujing Telescope(GSJT)is a National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform Commission
文摘We present preliminary analyses of spectra of quasar candidates in two Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope - LAMOST) test fields near M 31 where one is close to the optical center of the disk and the other is towards the northeastern outskirts of the halo, obtained during the early stage of the GSJT commissioning in the last season of 2009. Both fields contain background low-redshift quasar candidates selected from the SDSS photometry. In total, 14 new quasars with redshifts up to 2 and i magnitudes between 16.7 and 19.2, are discovered, including 7 within the 2.5° central region of M 31. We briefly discuss the potential applications of these newly discovered bright quasars.
基金supported by the National Natural Science Foundation of China (Grant No.10525313)the National Key Basic Research Science Foundation of China (2007CB815405)The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST,now called the Guoshoujing Telescope) is a National Major Scientific Project built by the Chinese Academy of Sciences
文摘We report the discovery of eight new quasars in one extragalactic field (a five-degree field centered at RA=08^h58^m08.2^s, Dec=01°32′29.7″) with the Guoshoujing Telescope (LAMOST) commissioning observations made on 2009 December 18. These quasars, with i magnitudes from 16.44 to 19.34 and redshifts from 0.898 to 2.773, were not identified in the SDSS spectroscopic survey, though six of them with redshifts less than 2.5 were selected as quasar targets in SDSS. Except for one source without near-IR Y-band data, seven of these eight new quasars satisfy a newly proposed quasar selection criterion involving both near-IR and optical colors. Two of them were found in the 'redshift desert' for quasars (z from 2.2 to 3), indicating that the new criterion is efficient for uncovering missing quasars with similar optical colors to stars. Although LAMOST encountered some problems during the commissioning observations, we were still able to identify 38 other known SDSS quasars in this field, with i magnitudes from 16.24 to 19.10 and redshifts from 0.297 to 4.512. Our identifications imply that a substantial fraction of quasars may be miss- ing in previous quasar surveys. The implication of our results to the future LAMOST quasar survey is discussed.
基金the National Natural Science Foundation of China(NSFC,Nos.12090041,12090044,12090040,12073051,11733006,11903048 and 11973060)the National Key R&D Program of China(Grant No.2017YFA0402704)+2 种基金support from the Science and Technology Development Fund,MacauSAR(No.0007/2019/A)supported by Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDY-SSW-SLH007)the Guangxi Natural Science Foundation(No.2019GXNSFFA245008)。
文摘We introduce a method of subtracting geocoronal Hαemissions from the spectra of LAMOST medium-resolution spectral survey of Galactic nebulae(LAMOST-MRS-N).The flux ratios of the Hαsky line to the adjacent OHλ6554 single line do not show a pattern or gradient distribution in a plate.More interestingly,the ratio is well correlated to solar altitude,which is the angle of the Sun relative to the Earth’s horizon.It is found that the ratio decreases from 0.8 to 0.2 with the decreasing solar altitude from–17 to–73 degree.Based on this relation,which is described by a linear function,we can construct the Hαsky component and subtract it from the science spectrum.This method has been applied to the LAMOST-MRSN data,and the contamination level of the Hαsky to nebula is reduced from 40%to less than 10%.The new generated spectra will significantly improve the accuracy of the classifications and the measurements of physical parameters of Galactic nebulae.
基金supported by the National Key Basic Research Program of China (2014CB845700)the National Natural Science Foundation of China (Grant No. 11473001)
文摘Using a sample of over 70 000 red clump(RC) stars with 5%–10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center(LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z | ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle(7 ≤ RGC ≤ 11.5 kpc), the radial gradient has a moderately steep, negative slope of-0.08 dex kpc-1near the midplane(|Z | 〈 0.1 kpc), and the slope flattens with increasing |Z |. In the outer disk(11.5 〈 RGC ≤ 14 kpc), the radial gradients have an essentially constant, much less steep slope of-0.01 dex kpc-1at all heights above the plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk(0 ≤ |Z | ≤ 1 kpc)is found to flatten with RGC quicker than that of the upper disk(1 〈 |Z | ≤ 3 kpc).Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk(e.g. gas flows,radial migration, and internal and external perturbations).
基金supported by the National Key Basic Research Program of China (2014CB845700)supported by the National Natural Science Foundation of China (Grant No.11473001)B.Q.C acknowledges partial funding from the China Postdoctoral Science Foundation (2014M560843)
文摘Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the disk, and the rate of gas inflow near the solar neighborhood reaches a maximum around a lookback time of 7–8 Gyr.The transition between the two phases occurs around a lookback time between 8 and11 Gyr. The two phases may be responsible for the formation of the Milky Way's thick and thin disks, respectively. Also, as a consequence, we recommend that stellar age is a natural, physical criterion to distinguish stars from the thin and thick disks. From an epoch earlier than 11 Gyr to one between 8 and 11 Gyr, there is an abrupt, significant change in magnitude of both the radial and vertical metallicity gradients, suggesting that stellar radial migration is unlikely to play an important role in the formation of the thick disk.
基金supported by the National Key Basic Research Program of China (2014CB845700)
文摘We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ~2 kpc, a local subset of the global sample consisting of ~5400 stars within 150 pc, and an anti-center sample containing ~4400AFGK dwarfs and red clump stars within windows a few degrees wide centered on the Galactic Anti-center. The global sample is used to construct a three-dimensional map of bulk motions of the Galactic disk from the solar vicinity out to ~2 kpc with a spatial resolution of ~250 pc. Typical values of the radial and vertical components of bulk motion range from-15 km s-1to 15 km s-1; in contrast, the lag behind the circular motion dominates the azimuthal component by up to ~15 km s-1. The map reveals spatially coherent, kpc-scale stellar flows in the disk, with typical velocities of a few tens of km s-1. Bending- and breathing-mode perturbations are clearly visible,and vary smoothly across the disk plane. Our data also reveal higher-order perturbations, such as breaks and ripples, in the profiles of vertical motion versus height. From the local sample, we find that stars from different populations exhibit very different patterns of bulk motion. Finally, the anti-center sample reveals a number of peaks in stellar number density in the line-of-sight velocity versus distance distribution, with the nearer ones apparently related to the known moving groups. The "velocity bifurcation" reported by Liu et al. at Galactocentric radii 10–11 kpc is confirmed. However,just beyond this distance, our data also reveal a new triple-peaked structure.
基金supported by the National Key Basic Research Program of China(2014CB84570)the European Research Council under the European Community’s Seventh Framework Programme(FP7/20072013)/ERC grant agreement(No 338251,Stellar Ages)+1 种基金The Guo Shou Jing Telescope(the Large Sky Area Multi-Object Fiber Spectroscopic Telescope,LAMOST)is a National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform Commission
文摘Asteroseismology allows for deriving precise values of the surface gravity of stars. The accurate asteroseismic determinations now available for the large number of stars in the Kepler fields can be used to check and calibrate surface gravities that are currently being obtained spectroscopically for a huge number of stars targeted by large-scale spectroscopic surveys, such as the on-going Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Galactic survey. The LAMOST spectral surveys have obtained a large number of stellar spectra in the Kepler fields. Stellar atmospheric parameters of those stars have been determined with the LAMOST Stellar Parameter Pipeline at Peking University (LSP3), by template matching with the MILES empirical spectral library. In the current work, we compare surface gravities yielded by LSP3 with those of two asteroseismic samples-- the largest Kepler asteroseismic sample and the most accurate Kepler asteroseismic sample. We find that LSP3 surface gravities are in good agreement with asteroseismic values of Hekker et al., with a dispersion of -0.2 dex. Except for a few cases, asteroseismic surface gravities ofHuber et al. and LSP3 spectroscopic values agree for a wide range of surface gravities. However, some patterns in the differences can be identified upon close inspection. Potential ways to further improve the LSP3 spectroscopic estimation of stellar atmospheric parameters in the near future are briefly discussed. The effects of effective temperature and metallicity on asteroseismic determinations of surface gravities for giant stars are also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.12073051,12090040,12090041,11733006,11403061,11903048,U1631131,11973060,12090044,12073039,11633009,U1531118,11403037,11225316,11173030,11303038,Y613991N01,U1531245,11833006)the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences+4 种基金the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDY-SSW-SLH007)the supports from the Science and Technology Development Fund,Macao SAR(file No.0007/2019/A)Faculty Research Grants of the Macao University of Science and Technology(No.FRG19-004-SSI)a National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform Commission。
文摘Since Sep.2018,LAMOST has started the medium-resolution(R~7500)spectral survey(MRS).We proposed the spectral survey of Galactic nebulae,including HⅡregions,HH objects,supernova remnants,planetary nebulae and the special stars with MRS(LAMOST MRS-N).LAMOST MRS-N covers about 1700 square degrees of the northern Galactic plane within 40°<l<215°and-5°<b<5°.In this 5-year survey,we plan to observe about 500 thousand nebulae spectra.According to the commissioning observations,the nebulae spectra can provide precise radial velocity with uncertainty less than 1 km s^(-1).These high-precision spectral data are of great significance to our understanding of star formation and evolution.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12073051, 11973004, 12090040, 12090041, 11733006, 11403061, 11903048, U1631131, 11973060, 12090044, 12073039, 11633009, and U1531118)the Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences+2 种基金the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDY-SSW- SLH007)supports from the Science and Technology Development Fund, Macao SAR (file No. 0007/ 2019/A)Faculty Research Grants of the Macao University of Science and Technology (No. FRG- 19-004-SSI)。
文摘The spectral observations and analysis for the W80 region are presented by using the data of Medium-Resolution Spectroscopic Survey of Nebulae(MRS-N) with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST).A total of 2982 high-quality nebular spectra have been obtained in the 20 square degree field of view which covers the W80 complex,and the largest sample of spectral data has been established for the first time.The relative intensities,radial velocities(RVs),and full widths at half maximum(FWHMs) are measured with the high spectral resolution of LAMOST MRS-N,for Ha λ6563?,[NⅡ] λλ6548 A,6584 A,and [SⅡ] λλ6716A,6731 A emission lines.In the field of view of the whole W80 region,the strongest line emissions are found to be consistent with the bright nebulae NGC 7000,IC 5070,and LBN 391,and weak line emissions also exist in the Middle Region,where no bright nebulae are detected by the wide-band optical observations.The large-scale spectral observations of the W80 region reveal the systematic spatial variations of RVs and FWHMs,and several unique structural features.A "curved feature" to the east of NGC 7000,and a "jet feature" to the west of LBN 391 are detected to be showing larger RVs.A "wider FWHM region" is identified in the eastern part of NGC 7000.The variations of[S Ⅱ]/Ha ratios display a gradient from southwest to northeast in the NGC 7000 region,and manifest a ring shape around the "W80 bubble" ionized by an O-type star in L935.Further spectral and multi-band observations are guaranteed to investigate in detail the structural features.
基金supported by the National Key R&D Program of China(2017YFA0402704)the National Natural Science Foundation of China(Grant Nos.11733006,11403061,11903048,U1631131,11973060,U1531118,11403037,11225316,11173030,11303038,Y613991N01 and U1531245)+3 种基金the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences,Key Research Program of Frontier Sciences,CAS(Grant No.QYZDY-SSWSLH007)supports from the Science and Technology Development Fund,Macao SAR(file Nos.119/2017/A3,061/2017/A2 and 0007/2019/A)Faculty Research Grants of the Macao University of Science and Technology(No.FRG-19-004-SSI)Guo Shou Jing Telescope(the Large Sky Area MultiObject Fiber Spectroscopic Telescope LAMOST)is a National Major Scientific Project built by the Chinese Academy of Sciences.Funding for the project has been provided by the National Development and Reform Commissionpartially supported by the Open Project Program of the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences.
文摘We obtained seven spectra of the Be star V423 Aur on 2017 Dec.5 using the LAMOST MediumResolution Spectrograph with exposures from 600 to 1200 seconds.These spectra show the irregular Ha emission line profile variations(LPVs).In the seven spectra,from the 4 th to 7 th,the left part of Ha profile even shows excess.However,no variation can be seen from the follow-up observation of photometry by 1.26-m telescope and High-Resolution spectra by 2.16-m telescope.According to the High-Resolution spectra,we conclude that it is a B7 V type star with E(B-V)=0.709±0.036 and its vsini is221.8 km s-1.The short-term Ha LPVs could be explained as a result of the transient ejection of matter from rotating disk or shell around V423 Aur.
基金partially supported by the National Key Basic Research Program of China(2014CB845700)China Postdoctoral Science Foundation(2016M600850)+1 种基金the National Natural Science Foundation of China(No.11443006)Joint Research Fund in Astronomy(Nos.U1531244 and U1631236)
文摘Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multiepoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions,are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with Teff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12073051, 12090041, 12090040, 11733006, 11403061, 11903048, U1631131, 11973060, 12090044, 12073039, 11633009 and U1531118)the Key Laboratory of Optical Astronomy+4 种基金National Astronomical ObservatoriesChinese Academy of Sciencesthe Key Research Program of Frontier Sciences, CAS (Grant No. QYZDY-SSW- SLH007)supports from the Science and Technology Development Fund, Macao SAR (file No. 0007/ 2019/A)Faculty Research Grants of the Macao University of Science and Technology (No. FRG- 19-004-SSI)。
文摘The Large sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) medium-resolution spectral survey of Galactic Nebulae(MRS-N) has conducted for more than three years since 2018 September and observed more than190 thousand nebular spectra and 20 thousand stellar spectra.However,there is not yet a data processing pipeline for nebular spectra.To significantly improve the accuracy of nebulae classification and their physical parameters,we developed the MRS-N Pipeline.This article presented in detail each data processing step of the MRS-N Pipeline,such as removing cosmic rays,merging single exposure,fitting sky light emission lines,wavelength recalibration,subtracting skylight,measuring nebular parameters,creating catalogs and packing spectra.Finally,a description of the data products,including nebular spectra files and parameter catalogs,is provided.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0402704)the National Natural Science Foundation of China(Grant Nos.11903048,12090041,12090040,11833006,12073051,11733006,11403061,U1531118,11973060,U1631131 and 11873057)+4 种基金the NAOC Nebula Talents Program and the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDYSSW-SLH007)supports from The Science and Technology Development Fund,Macao SAR(file No.061/2017/A2 and 0007/2019/A)Faculty Research Grants of the Macao University of Science and Technology(program No.FRG-19-004-SSI)Guoshoujing Telescope(the Large Sky Area MultiObject Fiber Spectroscopic Telescope,LAMOST)is a National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform Commission。
文摘Accurate radial velocity determinations of optical emission lines(i.e.,[NⅡ]λλ6548,6584,Hαand[SⅡ]λλ6717,6731)are very important for investigating the kinematic and dynamic properties of nebulae.The second stage survey program of Large sky Area Multi-Object fiber Spectroscopic Telescope(LAMOST)has started a sub-survey of nebulae(MRS-N)which will spectroscopically observe the optical emission lines of a large sample of nebulae near the Galactic plane.Until now,15 MRS-N plates have been observed from September 2017 to June 2019.Based on fitting the sky emission lines in the red band spectra of MRS-N,we investigate the precision of wavelength calibration and find there are systematic deviations of radial velocities(RVs)from~0.2 to 4 km s^(-1) for different plates.Especially for the plates obtained in March 2018,the systematic deviations of RVs can be as large as~4 km s^(-1),which then go down to~0.2-0.5 kms^(-1) at the end of 2018 and January 2019.An RV calibration function is proposed for these MRS-N plates,which can simultaneously and successfully calibrate the systematic deviations and improve the precision of RVs.
基金the National Natural Science Foundation of China (Grant No. 11873081)partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy, National Astronomical Observatories, CAS。
文摘We conducted photometric and spectroscopic observations of Ross 15 in order to further study the flare properties of this less observed flare star.A total of 28 B-band flares are detected in 128 hr of photometric observations,leading to a total flare rate of 0.22-0.040.04 h-1,more accurate than that provided by previous work.We give the energy range of the B-band flare(1029.5-1031.5 erg) and the flare frequency distribution(FFD) for the star.Within the same energy range,the FFD is lower than that of GJ 1243(M4)and YZ CMi(M4.5),roughly in the middle of those of three M5-type stars and higher than the average FFDs of spectral types> M6.We performed,for the first time for Ross 15,simultaneous high-cadence spectroscopic and photometric observations,resulting in detection of the most energetic flare in our sample.The intensity enhancements of the continuum and Balmer lines with significant correlations between them are detected during the flare,which is the same as those of other deeply studied flare stars with similar spectral type.
基金supported by the National Basic Research Program of China (973 Program, 2014CB845700)the China Postdoctoral Science Foundation (2014M560843)
文摘We present a catalog of 908 objects observed with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) in fields in the vicinity of M31 and M33, targeted as globular clusters(GCs) and candidates. The targets include known GCs and candidates selected from the literature, as well as new candidates selected from the Sloan Digital Sky Survey(SDSS). Analysis shows that 356 of them are likely GCs with various confidence levels, while the remaining ones turn out to be background galaxies and quasars, stars and H II regions in M31 or foreground Galactic stars. The 356 likely GCs include 298 bona fide GCs and 26 candidates known in the literature. Three candidates, selected from the Revised Bologna Catalog of M31 GCs and candidates(RBC) and one possible cluster from Johnson et al., are confirmed to be bona fide clusters. We search for new GCs in the halo of the M31 among the new candidates selected from the SDSS photometry. Based on radial velocities yielded by LAMOST spectra and visual examination of the SDSS images, we find 28 objects, 5bona fide and 23 likely GCs. Among the five bona fide GCs, three have been recently discovered independently by others, and the remaining 25 are our new identifications,including two bona fide ones. The newly identified objects fall at projected distances ranging from 13 to 265 kpc from M31. Of the two newly discovered bona fide GCs,one is located near M33, probably a GC belonging to M33. The other bona fide GC falls on the Giant Stream with a projected distance of 78 kpc from M31. Of the 23 newly identified likely GCs, one has a projected distance of about 265 kpc from M31 and could be an intergalactic cluster.