Terrestrial plants must cope with drought stress to survive. Under drought stress, plants accumulate the phytohormone abscisic acid (ABA) by increasing its biosynthesis and decreasing its catabolism. However, the re...Terrestrial plants must cope with drought stress to survive. Under drought stress, plants accumulate the phytohormone abscisic acid (ABA) by increasing its biosynthesis and decreasing its catabolism. However, the regulatory pathways controlling ABA catabolism in response to drought remain largely unclear. Here, we report that the flowering repressor SHORT VEGETATIVE PHASE (SVP) is induced by drought stress and associates with the promoter regions of the ABA catabolism pathway genes CYP707A 1, CYP707A3 and AtBG1, causing decreased expression of CYP7OTA 1 and CYP707A3 but enhanced expression ofAtBG1 inArabidopsis leaves. Loss-of-function mutations in CYP707A 1 and CYP707A3 or overexpression of AtBG1 could rescue the drought-hypersensitive phenotype of svp mutant plants by increasing cellular ABA levels. Collectively, our results suggest that SVP is a central regulator of ABA catabolism and that a regulatory pathway involving SVP, CYP707A1/3, and AtBG1 plays a critical role in plant response to water deficit and plant drought resistance.展开更多
Abscisic acid(ABA)signaling is critical for seed germination and abiotic stress responses in terrestrial plants.PremRNA splicing is known to regulate ABA signaling.However,the involvement of canonical spliceosomal com...Abscisic acid(ABA)signaling is critical for seed germination and abiotic stress responses in terrestrial plants.PremRNA splicing is known to regulate ABA signaling.However,the involvement of canonical spliceosomal components in regulating ABA signaling is poorly understood.Here,we show that the spliceosome component Sm core protein SmEb plays an important role in ABA signaling.SmEb expression is up-regulated by ABA treatment,and analysis of Arabidopsis smeb mutant plants suggest that SmEb modulates the alternative splicing of the ABA signaling component HAB1 by enhancing the HAB1.1 splicing variant while repressing HAB1.2.Overexpression of HAB1.1 but not HAB1.2 rescues the ABA-hypersensitive phenotype of smeb mutants.Mutations in the transcription factor ABI3,4,or 5 also reduce the ABA hypersensitivity of smeb mutants during seed germination.Our results show that the spliceosomal component SmEb plays an important role in ABA regulation of seed germination and early seedling development.展开更多
Arsenic is a metalloid toxic to plants,animals and human beings.Small ubiquitin-like modifier(SUMO)conjugation is involved in many biological processes in plants.However,the role of SUMOylation in regulating plant ars...Arsenic is a metalloid toxic to plants,animals and human beings.Small ubiquitin-like modifier(SUMO)conjugation is involved in many biological processes in plants.However,the role of SUMOylation in regulating plant arsenic response is still unclear.In this study,we found that dysfunction of SUMO E3 ligase SIZ1 improves arsenite resistance in Arabidopsis.Overexpression of the dominant-negative SUMO E2 variant resembled the arsenite-resistant phenotype of siz1 mutant,indicating that SUMOylation plays a negative role in plant arsenite detoxification.The siz1 mutant accumulated more glutathione(GSH)than the wild type under arsenite stress,and the arsenite-resistant phenotype of siz1 was depressed by inhibiting GSH biosynthesis.The transcript levels of the genes in the GSH biosynthetic pathway were increased in the siz1 mutant comparing with the wild type in response to arsenite treatment.Taken together,our findings revealed a novel function of SIZ1 in modulating plant arsenite response through regulating the GSH-dependent detoxification.展开更多
文摘Terrestrial plants must cope with drought stress to survive. Under drought stress, plants accumulate the phytohormone abscisic acid (ABA) by increasing its biosynthesis and decreasing its catabolism. However, the regulatory pathways controlling ABA catabolism in response to drought remain largely unclear. Here, we report that the flowering repressor SHORT VEGETATIVE PHASE (SVP) is induced by drought stress and associates with the promoter regions of the ABA catabolism pathway genes CYP707A 1, CYP707A3 and AtBG1, causing decreased expression of CYP7OTA 1 and CYP707A3 but enhanced expression ofAtBG1 inArabidopsis leaves. Loss-of-function mutations in CYP707A 1 and CYP707A3 or overexpression of AtBG1 could rescue the drought-hypersensitive phenotype of svp mutant plants by increasing cellular ABA levels. Collectively, our results suggest that SVP is a central regulator of ABA catabolism and that a regulatory pathway involving SVP, CYP707A1/3, and AtBG1 plays a critical role in plant response to water deficit and plant drought resistance.
基金supported by the National Natural Science Foundation of China(grant 32000206 to Z.W.)the Youth Innovation Promotion Association(2020273 to Z.W.)of the Chinese Academy of Sciences.
文摘Abscisic acid(ABA)signaling is critical for seed germination and abiotic stress responses in terrestrial plants.PremRNA splicing is known to regulate ABA signaling.However,the involvement of canonical spliceosomal components in regulating ABA signaling is poorly understood.Here,we show that the spliceosome component Sm core protein SmEb plays an important role in ABA signaling.SmEb expression is up-regulated by ABA treatment,and analysis of Arabidopsis smeb mutant plants suggest that SmEb modulates the alternative splicing of the ABA signaling component HAB1 by enhancing the HAB1.1 splicing variant while repressing HAB1.2.Overexpression of HAB1.1 but not HAB1.2 rescues the ABA-hypersensitive phenotype of smeb mutants.Mutations in the transcription factor ABI3,4,or 5 also reduce the ABA hypersensitivity of smeb mutants during seed germination.Our results show that the spliceosomal component SmEb plays an important role in ABA regulation of seed germination and early seedling development.
基金supported by the National Natural Science Foundation of China(grant 32000206 to Z.W.)the Youth Innovation Promotion Association(2020273 to Z.W.)of the Chinese Academy of Sciences.
文摘Arsenic is a metalloid toxic to plants,animals and human beings.Small ubiquitin-like modifier(SUMO)conjugation is involved in many biological processes in plants.However,the role of SUMOylation in regulating plant arsenic response is still unclear.In this study,we found that dysfunction of SUMO E3 ligase SIZ1 improves arsenite resistance in Arabidopsis.Overexpression of the dominant-negative SUMO E2 variant resembled the arsenite-resistant phenotype of siz1 mutant,indicating that SUMOylation plays a negative role in plant arsenite detoxification.The siz1 mutant accumulated more glutathione(GSH)than the wild type under arsenite stress,and the arsenite-resistant phenotype of siz1 was depressed by inhibiting GSH biosynthesis.The transcript levels of the genes in the GSH biosynthetic pathway were increased in the siz1 mutant comparing with the wild type in response to arsenite treatment.Taken together,our findings revealed a novel function of SIZ1 in modulating plant arsenite response through regulating the GSH-dependent detoxification.