The Moderate Resolution Imaging Spectroradiometer(MODIS)surface reflectance data were used to analyze the temporal and spatial distribution characteristics of water clarity(Z_(sd))in the Jiaozhou Bay,Qingdao,China,in ...The Moderate Resolution Imaging Spectroradiometer(MODIS)surface reflectance data were used to analyze the temporal and spatial distribution characteristics of water clarity(Z_(sd))in the Jiaozhou Bay,Qingdao,China,in the Yellow Sea from 2000 to 2018.Z_(sd)retrieval models were regionally optimized using in-situ data with coincident MODIS images,and then were used to retrieve the Z_(sd) products in Jiaozhou Bay from 2000-2018.The analysis of the Z_(sd) results suggests that the spatial distribution of relative Z_(sd) spatial characteristics in Jiaozhou Bay was stable,being higher Z_(sd) in the southeast and a lower Z_(sd) in the northwest.The annual mean Z_(sd) in Jiaozhou Bay showed a significant upward trend,with an annual increase of approximately 0.02 m.Water depth and wind speed were important factors affecting the spatial distribution and annual variation of Z_(sd) in Jiaozhou Bay,respectively.展开更多
2H-MoS_(2) is a well-studied and promising non-noble metal electrocatalyst for heterogeneous reactions,such as the hydrogen evolution reaction(HER).The performance is largely limited by the chemically inert basal plan...2H-MoS_(2) is a well-studied and promising non-noble metal electrocatalyst for heterogeneous reactions,such as the hydrogen evolution reaction(HER).The performance is largely limited by the chemically inert basal plane,which is unfavorable for surface adsorption and reactions.Herein,we report a facile method to boost the HER activities of 2H-MoS_(2) by coupling with epitaxial Bi2Te3 topological insulator films.The as-obtained MoS_(2)/Bi2Te3/SrTiO3 catalyst exhibits prominent HER catalytic activities compared to that of pure MoS_(2) structures,with a 189 mV decrease in the overpotential required to reach a current density of 10 mA cm^(−2) and a low Tafel slope of 58 mV dec−1.Theoretical investigations suggest that the enhanced catalytic activity originates from the charge redistribution at the interface between the Bi2Te3topological insulator films and the MoS_(2) layer.The delocalized sp-derived topological surface states could denote electrons to the MoS_(2) layer and activate the basal plane for hydrogen adsorption.This study demonstrates the potential of manipulating topological surface states to design high-performance electrocatalysts.展开更多
Sea ice export through the Baffin Bay plays a vital role in modulating the sea ice cover variability in the Labrador Sea.In this study,satellite-derived sea ice products are used to obtain the sea ice area flux(SIAF)t...Sea ice export through the Baffin Bay plays a vital role in modulating the sea ice cover variability in the Labrador Sea.In this study,satellite-derived sea ice products are used to obtain the sea ice area flux(SIAF)through the three passages in the Baffin Bay(referred to as A,B,and C for the north,middle,and south passages,respectively).The spatial variability of the monthly sea ice drift in the Baffin Bay is presented.The interannual variability and trends in SIAF via the three passages are outlined.The connection to several large-scale atmospheric circulation modes is assessed.Over the period of 1988-2015,the average annual(October to the following September)SIAF amounts to 555×10^(3) km^(2),642×10^(3) km^(2),and 551×10^(3) km^(2) through Passages A,B,and C,respectively.These quantities are less than that observed through the Fram Strait(FS,707×10^(3) km^(2))of the corresponding period.The positive trends in annual SIAF,on the order of 53.1×10^(3) km^(2)/(10 a)and 43.2×10^(3) km^(2)/(10 a)(significant at the 95%confidence level),are identified at Passages A and B,respectively.The trend of the south passage(C),however,is slightly negative(-13.3×10^(3) km^(2)/(10 a),not statistically significant).The positive trends in annual SIAF through the Passages A and B are primarily attributable to the significant increases after 2000.The connection between the Baffin Bay sea ice export and the North Atlantic Oscillation is not significant over the studied period.By contrast,the association with the cross-gate sea level pressure difference is robust in the Baffin Bay(R equals 0.69 to 0.71,depending on the passages considered),but relatively weaker than that over FS(R=0.74).展开更多
Multiple pulmonary ground-glass nodules(GGNs),a typical clinical manifestation of multiple primary lung cancers(MPLCs),are of great significance for the early screening,diagnosis,and accurate treatment of lung cancer....Multiple pulmonary ground-glass nodules(GGNs),a typical clinical manifestation of multiple primary lung cancers(MPLCs),are of great significance for the early screening,diagnosis,and accurate treatment of lung cancer.Thus,the recent increase in the detection rate of multiple pulmonary GGNs has attracted much attention.However,compared with the more widely studied single GGNs,evaluating GGNs is more challenging because of the uncertainty of the etiology,difficult differential diagnosis,and lack of optimal management standards and guidelines.Most current solutions for multiple GGNs are based on the management experiences and principles of a single GGN.Therefore,it is necessary to obtain better understanding of multiple GGNs and to optimize the diagnostic methods and treatments.Both the existing challenges and potential of new methods for diagnosing and treating multiple pulmonary GGNs are reviewed and discussed in this article,with the aim of providing a reference for the clinical management of this highly prevalent condition.展开更多
Impact detecting and counting are fundamental functions of fuses used in hard target penetration weapons.However,detection failure caused by battery breakdown in high-g acceleration environments poses a vulnerability ...Impact detecting and counting are fundamental functions of fuses used in hard target penetration weapons.However,detection failure caused by battery breakdown in high-g acceleration environments poses a vulnerability for such weapons.This paper introduces a novel supercapacitor that combines energy storage and high-g impact detection,called self-sensing supercapacitor.By deliberately inducing a transient soft short-circuit during shock in the supercapacitor,it is possible to detect external impact by its transient voltage drop.To realize this concept,firstly,by introducing the contact theory and force-induced percolation model,the electrode strength and roughness are found to have key impacts on the formation of soft circuits.Subsequently,to meet the needs for sensitivity and capacity,a high-density porous carbon(HDPC)that combines high mechanical strength and porosity,is selected as a suitable candidate based on the analysis results.Furthermore,a two-step curing method is proposed to prepare the high-roughness HDPC(HRHDPC)electrode and to assemble the self-sensing supercapacitor.Due to the rich specific surface of the electrodes and the high surface strength and roughness conducive to the formation of transient soft short circuits,the self-sensing supercapacitor not only possesses an excellent specific capacitance(171 F/g at 0.5 A/g)but also generates significant voltage response signals when subjected to high-g impacts ranging from 8000g to 31,000g.Finally,the self-sensing supercapacitor is applied to compose a successive high-g impact counting system and compared to traditional solutions(sensors and tantalum capacitors)in the military fuzes.The results show that the self-sensing supercapacitor-based system exhibits advantages in terms of size,power consumption,and counting accuracy.展开更多
Supercapacitors(SCs)have been successfully used in electric vehicles or military equipment systems for their high power density.However,the mechanical impacts from vehicle crashes and missile penetration probably caus...Supercapacitors(SCs)have been successfully used in electric vehicles or military equipment systems for their high power density.However,the mechanical impacts from vehicle crashes and missile penetration probably cause performance fluctuations or failure of SCs,which may threaten the safety of systems using SCs.In this paper,a generalized circuit model to analyze the transient process of SCs under mechanical loads is proposed.The circuit model simultaneously takes capacitance change,internal short-circuit and resistance change into account,an extra resistor-capacitor circuit(RCC)is added to simulate the nonlinear behavior during charging and discharging.Subsequently,the relationships between pressure and fundamental circuit parameters are determined by static methods.By taking the static test data into the circuit model,the transient response of different types of SCs under particular mechanical loading conditions is predicted.Finally,the influences of some crucial parameters on the voltage responses of SCs are revealed based on the simulations,which provide references for designing and optimizing mechanical load-resistant or self-sensing SCs in specific application scenarios.展开更多
基金Supported by the National Key Research and Development Program of China(No.2017YFC0405804)the National Natural Science Foundation of China(Nos.41971318,41701402,41901272)the Science and Technology Service Network Initiative,Chinese Academy of Sciences(No.KFJ-STS-ZDTP-077)。
文摘The Moderate Resolution Imaging Spectroradiometer(MODIS)surface reflectance data were used to analyze the temporal and spatial distribution characteristics of water clarity(Z_(sd))in the Jiaozhou Bay,Qingdao,China,in the Yellow Sea from 2000 to 2018.Z_(sd)retrieval models were regionally optimized using in-situ data with coincident MODIS images,and then were used to retrieve the Z_(sd) products in Jiaozhou Bay from 2000-2018.The analysis of the Z_(sd) results suggests that the spatial distribution of relative Z_(sd) spatial characteristics in Jiaozhou Bay was stable,being higher Z_(sd) in the southeast and a lower Z_(sd) in the northwest.The annual mean Z_(sd) in Jiaozhou Bay showed a significant upward trend,with an annual increase of approximately 0.02 m.Water depth and wind speed were important factors affecting the spatial distribution and annual variation of Z_(sd) in Jiaozhou Bay,respectively.
基金This work was financially supported by the European Research Council(ERC Advanced Grant No.291472'Idea Heusler1)and the ERC Advanced Grant(No.742068)TOPMAT.K.C.was funded by the National Natural Science Foundation of China(Grant No.12074038)J.H.and S.P.were supported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)No.314790414.
文摘2H-MoS_(2) is a well-studied and promising non-noble metal electrocatalyst for heterogeneous reactions,such as the hydrogen evolution reaction(HER).The performance is largely limited by the chemically inert basal plane,which is unfavorable for surface adsorption and reactions.Herein,we report a facile method to boost the HER activities of 2H-MoS_(2) by coupling with epitaxial Bi2Te3 topological insulator films.The as-obtained MoS_(2)/Bi2Te3/SrTiO3 catalyst exhibits prominent HER catalytic activities compared to that of pure MoS_(2) structures,with a 189 mV decrease in the overpotential required to reach a current density of 10 mA cm^(−2) and a low Tafel slope of 58 mV dec−1.Theoretical investigations suggest that the enhanced catalytic activity originates from the charge redistribution at the interface between the Bi2Te3topological insulator films and the MoS_(2) layer.The delocalized sp-derived topological surface states could denote electrons to the MoS_(2) layer and activate the basal plane for hydrogen adsorption.This study demonstrates the potential of manipulating topological surface states to design high-performance electrocatalysts.
基金The National Key Research and Development Program of China under contract Nos 2016YFA0600102,2017YFC1405106,2016YFC1402707,and 2019YFE0114800the General Project of Natural Science Foundation of Shandong Province under contract No.ZR2020MD100+4 种基金the Key Deployment Project of Centre for Ocean Mega Science,Chinese Academy of Sciences,under contract No.COMS2020Q12the National Natural Science Foundation of China under contract Nos 42076185 and 41406215the Open Fund for the Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences under contract No.MGE2020KG04the Key R&D Project of Shandong Province under contract No.2019GSF111017the NSFCShandong Joint Fund for Marine Science Research Centers under contract No.U1606401.
文摘Sea ice export through the Baffin Bay plays a vital role in modulating the sea ice cover variability in the Labrador Sea.In this study,satellite-derived sea ice products are used to obtain the sea ice area flux(SIAF)through the three passages in the Baffin Bay(referred to as A,B,and C for the north,middle,and south passages,respectively).The spatial variability of the monthly sea ice drift in the Baffin Bay is presented.The interannual variability and trends in SIAF via the three passages are outlined.The connection to several large-scale atmospheric circulation modes is assessed.Over the period of 1988-2015,the average annual(October to the following September)SIAF amounts to 555×10^(3) km^(2),642×10^(3) km^(2),and 551×10^(3) km^(2) through Passages A,B,and C,respectively.These quantities are less than that observed through the Fram Strait(FS,707×10^(3) km^(2))of the corresponding period.The positive trends in annual SIAF,on the order of 53.1×10^(3) km^(2)/(10 a)and 43.2×10^(3) km^(2)/(10 a)(significant at the 95%confidence level),are identified at Passages A and B,respectively.The trend of the south passage(C),however,is slightly negative(-13.3×10^(3) km^(2)/(10 a),not statistically significant).The positive trends in annual SIAF through the Passages A and B are primarily attributable to the significant increases after 2000.The connection between the Baffin Bay sea ice export and the North Atlantic Oscillation is not significant over the studied period.By contrast,the association with the cross-gate sea level pressure difference is robust in the Baffin Bay(R equals 0.69 to 0.71,depending on the passages considered),but relatively weaker than that over FS(R=0.74).
文摘Multiple pulmonary ground-glass nodules(GGNs),a typical clinical manifestation of multiple primary lung cancers(MPLCs),are of great significance for the early screening,diagnosis,and accurate treatment of lung cancer.Thus,the recent increase in the detection rate of multiple pulmonary GGNs has attracted much attention.However,compared with the more widely studied single GGNs,evaluating GGNs is more challenging because of the uncertainty of the etiology,difficult differential diagnosis,and lack of optimal management standards and guidelines.Most current solutions for multiple GGNs are based on the management experiences and principles of a single GGN.Therefore,it is necessary to obtain better understanding of multiple GGNs and to optimize the diagnostic methods and treatments.Both the existing challenges and potential of new methods for diagnosing and treating multiple pulmonary GGNs are reviewed and discussed in this article,with the aim of providing a reference for the clinical management of this highly prevalent condition.
基金supported in part by the National Natural Science Foundation of China(No.52007084)by the Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘Impact detecting and counting are fundamental functions of fuses used in hard target penetration weapons.However,detection failure caused by battery breakdown in high-g acceleration environments poses a vulnerability for such weapons.This paper introduces a novel supercapacitor that combines energy storage and high-g impact detection,called self-sensing supercapacitor.By deliberately inducing a transient soft short-circuit during shock in the supercapacitor,it is possible to detect external impact by its transient voltage drop.To realize this concept,firstly,by introducing the contact theory and force-induced percolation model,the electrode strength and roughness are found to have key impacts on the formation of soft circuits.Subsequently,to meet the needs for sensitivity and capacity,a high-density porous carbon(HDPC)that combines high mechanical strength and porosity,is selected as a suitable candidate based on the analysis results.Furthermore,a two-step curing method is proposed to prepare the high-roughness HDPC(HRHDPC)electrode and to assemble the self-sensing supercapacitor.Due to the rich specific surface of the electrodes and the high surface strength and roughness conducive to the formation of transient soft short circuits,the self-sensing supercapacitor not only possesses an excellent specific capacitance(171 F/g at 0.5 A/g)but also generates significant voltage response signals when subjected to high-g impacts ranging from 8000g to 31,000g.Finally,the self-sensing supercapacitor is applied to compose a successive high-g impact counting system and compared to traditional solutions(sensors and tantalum capacitors)in the military fuzes.The results show that the self-sensing supercapacitor-based system exhibits advantages in terms of size,power consumption,and counting accuracy.
基金the National Natural Science Foundation of China(No.52007084)the Natural Science Foundation of Jiangsu Province under Grant(No.BK20190470).
文摘Supercapacitors(SCs)have been successfully used in electric vehicles or military equipment systems for their high power density.However,the mechanical impacts from vehicle crashes and missile penetration probably cause performance fluctuations or failure of SCs,which may threaten the safety of systems using SCs.In this paper,a generalized circuit model to analyze the transient process of SCs under mechanical loads is proposed.The circuit model simultaneously takes capacitance change,internal short-circuit and resistance change into account,an extra resistor-capacitor circuit(RCC)is added to simulate the nonlinear behavior during charging and discharging.Subsequently,the relationships between pressure and fundamental circuit parameters are determined by static methods.By taking the static test data into the circuit model,the transient response of different types of SCs under particular mechanical loading conditions is predicted.Finally,the influences of some crucial parameters on the voltage responses of SCs are revealed based on the simulations,which provide references for designing and optimizing mechanical load-resistant or self-sensing SCs in specific application scenarios.