期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
EQUIVALENT MODEL OF EXPANSION OF CEMENT MORTAR UNDER SULPHATE EROSION 被引量:5
1
作者 jue zhu Minqiang Jiang Jiankang Chen 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第4期327-332,共6页
The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods. First, cement mortars are fabricated with the ratio of water to cement of 0.4, 0.6, and 0.8.... The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods. First, cement mortars are fabricated with the ratio of water to cement of 0.4, 0.6, and 0.8. Secondly, the expansion of specimen immerged in sulphate solution is measured at different times. Thirdly, a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method. In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account. Finally, the numerical calculation is results indicate that the model perfectly describes performed. The numerical and experimental the expansion of the cement mortar. 展开更多
关键词 size effect MICROVOIDS EXPANSION sodium sulfate attack
下载PDF
DEVELOPMENT OF EXPERIMENTAL METHODS FOR IMPACT TESTING BY COMBINING HOPKINSON PRESSURE BAR WITH OTHER TECHNIQUES 被引量:9
2
作者 Lili Wang Shisheng Hu +4 位作者 Liming Yang Zijian Sun jue zhu Huawei Lai Yuanyuan Ding 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第4期331-344,共14页
The split Hopkinson pressure bar(SHPB) technique and the wave propagation inverse analysis(WPIA) technique are both extensively used to experimentally investigate the impact behavior of materials, although neither... The split Hopkinson pressure bar(SHPB) technique and the wave propagation inverse analysis(WPIA) technique are both extensively used to experimentally investigate the impact behavior of materials, although neither of them alone provides a fully satisfactory analysis. In the present paper, attention is given to new experimental techniques by incorporating a damagemodified constitutive model into the SHPB technique and combining the Hopkinson pressure bar(HPB) technique with WPIA. First, to distinguish the response due to dynamic constitutive behavior and the response due to dynamic damage evolution, the SHPB method incorporating a damage-modified constitutive model is developed, including an explicit damage-modified Zhu–Wang–Tang model and an implicit damage-modified constitutive model. Second, when the SHPB results become invalid, a method of combining new Lagrange inverse analyses with the HPB technique is developed, including cases of the HPB arranged in front of a long specimen and behind the specimen. As examples of these new methods, typical results are given for nonlinear viscoelastic polymers and concretes considering damage evolution, a super-elastic Ti–Ni alloy with phase transformation and an aluminum foam with shock waves propagating within it. 展开更多
关键词 Hopkinson pressure bar SHPB Lagrangian analysis high strain rate rate-dependent constitutive relation damage evolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部