N-doped reduced graphene oxide quantum dots(N-rGQDs) have attracted more and more attention in efficient catalytic degradation of aqueous organic pollutants.However,the synthesis of N-rGQDs is generally a complex and ...N-doped reduced graphene oxide quantum dots(N-rGQDs) have attracted more and more attention in efficient catalytic degradation of aqueous organic pollutants.However,the synthesis of N-rGQDs is generally a complex and high energy required process for the reduction and N-doping steps.In this study,a facile and green fabrication approach of N-rGQDs is established,based on a metal-free Fenton reaction without additional energy-input.The N structures of N-rGQDs play a significant role in the promotion of their catalytic performance.The N-rGQDs with relatively high percentage of aromatic nitrogen(NAr-rGQDs) perform excellent catalytic activities,with which the degradation efficiency of pollutant is enhanced by 25 times.Density functional theory(DFT) calculation also indicates aromatic nitrogen structures with electron-rich sites are prone to transfer electron,presenting a key role in the catalytic reaction.This metal-free Fenton process provides a green and costeffective strategy for one-step fabrication of N-rGQDs with controllable features and potential environmental catalytic applications.展开更多
基金funding by National Natural Science Foundation of China (No. 51978643)Youth Innovation Promotion Association of CAS (Y201814)The National Youth Talent Support Program of China。
文摘N-doped reduced graphene oxide quantum dots(N-rGQDs) have attracted more and more attention in efficient catalytic degradation of aqueous organic pollutants.However,the synthesis of N-rGQDs is generally a complex and high energy required process for the reduction and N-doping steps.In this study,a facile and green fabrication approach of N-rGQDs is established,based on a metal-free Fenton reaction without additional energy-input.The N structures of N-rGQDs play a significant role in the promotion of their catalytic performance.The N-rGQDs with relatively high percentage of aromatic nitrogen(NAr-rGQDs) perform excellent catalytic activities,with which the degradation efficiency of pollutant is enhanced by 25 times.Density functional theory(DFT) calculation also indicates aromatic nitrogen structures with electron-rich sites are prone to transfer electron,presenting a key role in the catalytic reaction.This metal-free Fenton process provides a green and costeffective strategy for one-step fabrication of N-rGQDs with controllable features and potential environmental catalytic applications.