Reconstructing the spatial patterns of regional climate and vegetation during specific intervals in the past is important for assessing the possible responses of the ecological environment under future global warming ...Reconstructing the spatial patterns of regional climate and vegetation during specific intervals in the past is important for assessing the possible responses of the ecological environment under future global warming scenarios. In this study, we reconstructed the history of regional vegetation and climate based on six radiocarbon-dated pollen records from the North China Plain. Combining the results with existing pollen records, we reconstruct the paleoenvironment of the North China Plain during the Last Glacial Maximum(LGM) and the Holocene Climatic Optimum(HCO). The results show that changes in the regional vegetation since the LGM were primarily determined by climatic conditions, the geomorphic landscape and by human activity.During the LGM, the climate was cold and dry;mixed broadleaf-coniferous forest and deciduous-evergreen broadleaf forest developed in the southern mountains, and cold-resistant coniferous forest and mixed broadleaf-coniferous forest were present in the northern mountains. The forest cover was relatively low, with mesophytic and hygrophilous meadow occupying the southern part of the plain, and temperate grassland and desert steppe were distributed in the north;Chenopodiaceae-dominated halophytes grew on the exposed continental shelf of the Bohai Sea and Yellow Sea. During the HCO, the climate was warm and wet;deciduous broadleaf forest and deciduous-evergreen broadleaf forest, with subtropical species, developed in the southern mountains, and deciduous broadleaf forest with thermophilic species was present in northern mountains. Although the degree of forest cover was greater than during the LGM, the vegetation of the plain area was still dominated by herbs, while halophytes had migrated inland due to sea level rise. In addition, the expansion of human activities, especially the intensification of cultivation,had a significant influence on the natural vegetation. Our results provide data and a scientific basis for paleoclimate modelling and regional carbon cycle assessment in north China, with implications for predicting changes in the ecological environment under future global warming scenarios.展开更多
The impact of global warming on the climate of northern China has been investigated intensively, and the behavior of the East Asian monsoon during previous intervals of climatic warming may provide insight into future...The impact of global warming on the climate of northern China has been investigated intensively, and the behavior of the East Asian monsoon during previous intervals of climatic warming may provide insight into future changes. In this study, we use paleovegetation records from loess and lake sediments in the marginal zone of the East Asian summer monsoon(EASM) to reconstruct the EASM during the interval of warming from the Last Glacial Maximum(LGM) to the Holocene. The results show that during the LGM, desert steppe or dry steppe dominated much of northern China;in addition, the southeastern margin of the deserts east of the Helan Mountains had a distribution similar to that of the present-day, or was located slightly further south, due to the cold and dry climate caused by a strengthened East Asian winter monsoon(EAWM) and weakened EASM. During the last deglaciation, with the strengthening of the EASM and concomitant weakening of the EAWM, northern China gradually became humid. However, this trend was interrupted by abrupt cooling during the Heinrich 1(H1) and Younger Dryas(YD) events. The EASM intensified substantially during the Holocene, and the monsoon rain belt migrated at least 300 km northwestwards, which led to the substantial shrinking of the desert area in the central and eastern part of northern China, and to the large expansion of plants favored by warm and humid conditions. Paleoclimatic records from the marginal zone of the EASM all show that the EASM reached its peak in the mid-Holocene, and past global climatic warming significantly strengthened the EASM, thereby greatly improving the ecological environment in northern China. Thus, northern China is expected to become wetter as global warming continues. Finally, high resolution Holocene vegetation records are sparse compared with the numerous records on the orbital timescale, and there is a need for more studies of Holocene climatic variability on the centennial-to-decadal scale.展开更多
Carbonate clumped isotope(Δ47)is a new and reliable geothermometer.Endogenic carbonates in lake sediments are good archives to reconstruct lake water temperature using clumped isotope thermometry.However,applications...Carbonate clumped isotope(Δ47)is a new and reliable geothermometer.Endogenic carbonates in lake sediments are good archives to reconstruct lake water temperature using clumped isotope thermometry.However,applications of carbonate clumped isotope thermometry to lacustrine carbonates are still scarce because the existed organic and/or sulfur contaminants in such samples interfere with clumped isotope analysis and cause notable temperature biases.Therefore,exploring an effective way to remove contamination is a prerequisite to widely applying carbonate clumped isotope thermometry to lake sediments.By pretreating fine-grained endogenic carbonates from Dali lake sediments with hydrogen peroxide of different concentrations for different lengths of time,we conducted a series of conditional experiments to seek the optimal pretreatment condition for clumped isotope analysis.Δ47,Δ48 offset and 49 parameter were obtained from clumped isotope measurements to assess the effect of contamination removal.Results showed that untreated samples("0%-0")had a very high 49 parameter.After the treatment with hydrogen peroxide,the 49 parameter was significantly reduced while theΔ48 offset evidently increased.TheΔ47,Δ48 offset and 49 parameter of samples pretreated under different conditions showed significant variability,even though the measuredΔ47 temperatures changed within a relatively narrow range(i.e.,from 17.0±1.3 to 22.8±1.6°C).Among various treated samples,the sample"3%-8"yielded a smallerΔ48 offset and 49 parameter,and lowerΔ47 temperature of 17.0±1.3°C.Therefore,"reacting with 3%hydrogen peroxide for 8 h"was suggested to be the optimal condition for removing contaminants from lacustrine endogenic carbonates prior to clumped isotope analysis.At the time when the pretreatment condition was too intense(i.e.,H2O2 concentration>3%and/or reaction time>8 h),secondary contaminants might have been generated in the closed reaction system,whose ultimately transformed state may interfere with masses 47,48.Using the optimal pretreatment procedure,we obtained reasonableΔ47 temperature changes during the last deglaciation and found a temperature decrease of about 6°C in Northern China during the Younger Dryas period.Our study demonstrates a great potential of applying carbonate clumped isotope thermometry to lacustrine carbonates for paleo-temperature and paleo-elevation reconstructions in the future.展开更多
Pollen productivity is a critical parameter in the interpretation of pollen-vegetation relationships,and in the quantitative reconstructions of past vegetation from fossil pollen records.One-year monitoring records we...Pollen productivity is a critical parameter in the interpretation of pollen-vegetation relationships,and in the quantitative reconstructions of past vegetation from fossil pollen records.One-year monitoring records were collected for 143 pollen traps in various parts of northern China,together with modern vegetation data.Absolute Pollen Productivity Estimates(APPE)were calculated for 11 taxa using the ratio of pollen influx to plant coverage at each applicable sampling site,in which the plants of the target taxon were present.Relative Pollen Productivity Estimates(RPPE)were calculated for the 11 taxa(taking Poaceae as the reference taxon)at those sites in which each taxon occurred together with Poaceae.Artemisia and Chenopodiaceae were found to have the highest RPPEs and the largest RPPEs ranges,while Pinus and Quercus also had higher RPPEs than Poaceae;Abies,Betula,Larix,Picea and Cyperaceae had relatively low RPPEs.Variations in RPPE between different areas may be explained by variations in climatic conditions,plant coverage and land use practices which might influence plant growing situation.Marked effect that variations in pollen productivity can have on vegetation reconstructions was demonstrated by applying these distinct RPPEs to reconstructions of Holocene vegetation in the Lake Daihai area(northern China),such as a large range of RPPE produces a large range of plant coverage.Variations in RPPEs within a single taxon,related to vegetation coverage and climatic conditions,therefore need to be considered in future vegetation reconstructions.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05120202)the National Natural Science Foundation of China (Grant Nos. 41702184 & 41630753)+1 种基金the National Key Research and Development Program of China (Grant No. 2017YFA0603403)the Science Foundation of Hebei Normal University (Grant No. L2018B29)
文摘Reconstructing the spatial patterns of regional climate and vegetation during specific intervals in the past is important for assessing the possible responses of the ecological environment under future global warming scenarios. In this study, we reconstructed the history of regional vegetation and climate based on six radiocarbon-dated pollen records from the North China Plain. Combining the results with existing pollen records, we reconstruct the paleoenvironment of the North China Plain during the Last Glacial Maximum(LGM) and the Holocene Climatic Optimum(HCO). The results show that changes in the regional vegetation since the LGM were primarily determined by climatic conditions, the geomorphic landscape and by human activity.During the LGM, the climate was cold and dry;mixed broadleaf-coniferous forest and deciduous-evergreen broadleaf forest developed in the southern mountains, and cold-resistant coniferous forest and mixed broadleaf-coniferous forest were present in the northern mountains. The forest cover was relatively low, with mesophytic and hygrophilous meadow occupying the southern part of the plain, and temperate grassland and desert steppe were distributed in the north;Chenopodiaceae-dominated halophytes grew on the exposed continental shelf of the Bohai Sea and Yellow Sea. During the HCO, the climate was warm and wet;deciduous broadleaf forest and deciduous-evergreen broadleaf forest, with subtropical species, developed in the southern mountains, and deciduous broadleaf forest with thermophilic species was present in northern mountains. Although the degree of forest cover was greater than during the LGM, the vegetation of the plain area was still dominated by herbs, while halophytes had migrated inland due to sea level rise. In addition, the expansion of human activities, especially the intensification of cultivation,had a significant influence on the natural vegetation. Our results provide data and a scientific basis for paleoclimate modelling and regional carbon cycle assessment in north China, with implications for predicting changes in the ecological environment under future global warming scenarios.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFA0603403)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB26000000 & XDA05120204)the National Natural Science Foundation of China (Grant Nos. 41672175 & 41725010)
文摘The impact of global warming on the climate of northern China has been investigated intensively, and the behavior of the East Asian monsoon during previous intervals of climatic warming may provide insight into future changes. In this study, we use paleovegetation records from loess and lake sediments in the marginal zone of the East Asian summer monsoon(EASM) to reconstruct the EASM during the interval of warming from the Last Glacial Maximum(LGM) to the Holocene. The results show that during the LGM, desert steppe or dry steppe dominated much of northern China;in addition, the southeastern margin of the deserts east of the Helan Mountains had a distribution similar to that of the present-day, or was located slightly further south, due to the cold and dry climate caused by a strengthened East Asian winter monsoon(EAWM) and weakened EASM. During the last deglaciation, with the strengthening of the EASM and concomitant weakening of the EAWM, northern China gradually became humid. However, this trend was interrupted by abrupt cooling during the Heinrich 1(H1) and Younger Dryas(YD) events. The EASM intensified substantially during the Holocene, and the monsoon rain belt migrated at least 300 km northwestwards, which led to the substantial shrinking of the desert area in the central and eastern part of northern China, and to the large expansion of plants favored by warm and humid conditions. Paleoclimatic records from the marginal zone of the EASM all show that the EASM reached its peak in the mid-Holocene, and past global climatic warming significantly strengthened the EASM, thereby greatly improving the ecological environment in northern China. Thus, northern China is expected to become wetter as global warming continues. Finally, high resolution Holocene vegetation records are sparse compared with the numerous records on the orbital timescale, and there is a need for more studies of Holocene climatic variability on the centennial-to-decadal scale.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grants Nos.XDA19050104 and XDB26000000)the National Key R&D Program of China(Grant No.2017YFA0603400)+1 种基金the National Natural Science Foundation of China(Grants Nos.41931181&41672166)the Key Research Program of the Institute of Geology&Geophysics,CAS(Grant No.IGGCAS-201905)。
文摘Carbonate clumped isotope(Δ47)is a new and reliable geothermometer.Endogenic carbonates in lake sediments are good archives to reconstruct lake water temperature using clumped isotope thermometry.However,applications of carbonate clumped isotope thermometry to lacustrine carbonates are still scarce because the existed organic and/or sulfur contaminants in such samples interfere with clumped isotope analysis and cause notable temperature biases.Therefore,exploring an effective way to remove contamination is a prerequisite to widely applying carbonate clumped isotope thermometry to lake sediments.By pretreating fine-grained endogenic carbonates from Dali lake sediments with hydrogen peroxide of different concentrations for different lengths of time,we conducted a series of conditional experiments to seek the optimal pretreatment condition for clumped isotope analysis.Δ47,Δ48 offset and 49 parameter were obtained from clumped isotope measurements to assess the effect of contamination removal.Results showed that untreated samples("0%-0")had a very high 49 parameter.After the treatment with hydrogen peroxide,the 49 parameter was significantly reduced while theΔ48 offset evidently increased.TheΔ47,Δ48 offset and 49 parameter of samples pretreated under different conditions showed significant variability,even though the measuredΔ47 temperatures changed within a relatively narrow range(i.e.,from 17.0±1.3 to 22.8±1.6°C).Among various treated samples,the sample"3%-8"yielded a smallerΔ48 offset and 49 parameter,and lowerΔ47 temperature of 17.0±1.3°C.Therefore,"reacting with 3%hydrogen peroxide for 8 h"was suggested to be the optimal condition for removing contaminants from lacustrine endogenic carbonates prior to clumped isotope analysis.At the time when the pretreatment condition was too intense(i.e.,H2O2 concentration>3%and/or reaction time>8 h),secondary contaminants might have been generated in the closed reaction system,whose ultimately transformed state may interfere with masses 47,48.Using the optimal pretreatment procedure,we obtained reasonableΔ47 temperature changes during the last deglaciation and found a temperature decrease of about 6°C in Northern China during the Younger Dryas period.Our study demonstrates a great potential of applying carbonate clumped isotope thermometry to lacustrine carbonates for paleo-temperature and paleo-elevation reconstructions in the future.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.41877459 and 41630753)the CAS Pioneer Hundred Talents Program(Xianyong Cao)the German Research Foundation(DFG)(No.41861134030).
文摘Pollen productivity is a critical parameter in the interpretation of pollen-vegetation relationships,and in the quantitative reconstructions of past vegetation from fossil pollen records.One-year monitoring records were collected for 143 pollen traps in various parts of northern China,together with modern vegetation data.Absolute Pollen Productivity Estimates(APPE)were calculated for 11 taxa using the ratio of pollen influx to plant coverage at each applicable sampling site,in which the plants of the target taxon were present.Relative Pollen Productivity Estimates(RPPE)were calculated for the 11 taxa(taking Poaceae as the reference taxon)at those sites in which each taxon occurred together with Poaceae.Artemisia and Chenopodiaceae were found to have the highest RPPEs and the largest RPPEs ranges,while Pinus and Quercus also had higher RPPEs than Poaceae;Abies,Betula,Larix,Picea and Cyperaceae had relatively low RPPEs.Variations in RPPE between different areas may be explained by variations in climatic conditions,plant coverage and land use practices which might influence plant growing situation.Marked effect that variations in pollen productivity can have on vegetation reconstructions was demonstrated by applying these distinct RPPEs to reconstructions of Holocene vegetation in the Lake Daihai area(northern China),such as a large range of RPPE produces a large range of plant coverage.Variations in RPPEs within a single taxon,related to vegetation coverage and climatic conditions,therefore need to be considered in future vegetation reconstructions.