期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Plant Biosystems Design Research Roadmap 1.0 被引量:3
1
作者 Xiaohan Yang June I.Medford +33 位作者 Kasey Markel Patrick M.Shih Henrique C.De Paoli Cong T.Trinh Alistair J.McCormick Raphael Ployet Steven G.Hussey Alexander A.Myburg Poul Erik Jensen Md Mahmudul Hassan Jin Zhang Wellington Muchero Udaya C.Kalluri Hengfu Yin Renying Zhuo Paul E.Abraham Jin-Gui Chen David J.Weston Yinong Yang Degao Liu Yi Li Jessy Labbe Bing Yang Jun Hyung Lee Robert W.Cottingham Stanton Martin Mengzhu Lu Timothy J.Tschaplinski Guoliang Yuan Haiwei Lu Priya Ranjan julie c.mitchell Stan D.Wullschleger Gerald A.Tuskan 《BioDesign Research》 2020年第1期53-90,共38页
Human life intimately depends on plants for food,biomaterials,health,energy,and a sustainable environment.Various plants have been genetically improved mostly through breeding,along with limited modification via genet... Human life intimately depends on plants for food,biomaterials,health,energy,and a sustainable environment.Various plants have been genetically improved mostly through breeding,along with limited modification via genetic engineering,yet they are still not able to meet the ever-increasing needs,in terms of both quantity and quality,resulting from the rapid increase in world population and expected standards of living.A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches.This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems.Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes.From this perspective,we present a comprehensive roadmap of plant biosystems design covering theories,principles,and technical methods,along with potential applications in basic and applied plant biology research.We highlight current challenges,future opportunities,and research priorities,along with a framework for international collaboration,towards rapid advancement of this emerging interdisciplinary area of research.Finally,we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception,trust,and acceptance. 展开更多
关键词 PLANT utilizing BREEDING
原文传递
Biological and Molecular Components for Genetically Engineering Biosensors in Plants
2
作者 Yang Liu Guoliang Yuan +12 位作者 Md MahmudulHassan Paul E.Abraham julie c.mitchell Daniel Jacobson Gerald A.Tuskan Arjun Khakhar June Medford Cheng Zhao Chang-Jun Liu Carrie A.Eckert Mitchel J.Doktycz Timothy J.Tschaplinski Xiaohan Yang 《BioDesign Research》 2022年第1期19-37,共19页
Plants adapt to their changing environments by sensing and responding to physical,biological,and chemical stimuli.Due to their sessile lifestyles,plants experience a vast array of external stimuli and selectively perc... Plants adapt to their changing environments by sensing and responding to physical,biological,and chemical stimuli.Due to their sessile lifestyles,plants experience a vast array of external stimuli and selectively perceive and respond to specific signals.By repurposing the logic circuitry and biological and molecular components used by plants in nature,genetically encoded plant-based biosensors(GEPBs)have been developed by directing signal recognition mechanisms into carefully assembled outcomes that are easily detected.GEPBs allow for in vivo monitoring of biological processes in plants to facilitate basic studies of plant growth and development.GEPBs are also useful for environmental monitoring,plant abiotic and biotic stress management,and accelerating design-build-test-learn cycles of plant bioengineering.With the advent of synthetic biology,biological and molecular components derived from alternate natural organisms(e.g.,microbes)and/or de novo parts have been used to build GEPBs.In this review,we summarize the framework for engineering different types of GEPBs.We then highlight representative validated biological components for building plant-based biosensors,along with various applications of plant-based biosensors in basic and applied plant science research.Finally,we discuss challenges and strategies for the identification and design of biological components for plant-based biosensors. 展开更多
关键词 PLANTS MOLECULAR monitoring
原文传递
Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal
3
作者 Xiaohan Yang Degao Liu +12 位作者 Haiwei Lu David J.Weston Jin-Gui Chen Wellington Muchero Stanton Martin Yang Liu Md Mahmudul Hassan Guoliang Yuan Udaya C.Kalluri Timothy J.Tschaplinski julie c.mitchell Stan D.Wullschleger Gerald A.Tuskan 《BioDesign Research》 2021年第1期17-38,共22页
A grand challenge facing society is climate change caused mainly by rising CO_(2) concentration in Earth’s atmosphere.Terrestrial plants are linchpins in global carbon cycling,with a unique capability of capturing CO... A grand challenge facing society is climate change caused mainly by rising CO_(2) concentration in Earth’s atmosphere.Terrestrial plants are linchpins in global carbon cycling,with a unique capability of capturing CO_(2) via photosynthesis and translocating captured carbon to stems,roots,and soils for long-term storage.However,many researchers postulate that existing land plants cannot meet the ambitious requirement for CO_(2) removal to mitigate climate change in the future due to low photosynthetic efficiency,limited carbon allocation for long-term storage,and low suitability for the bioeconomy.To address these limitations,there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design(or biodesign).Here,we summarize validated biological parts(e.g.,protein-encoding genes and noncoding RNAs)for biological engineering of carbon dioxide removal(CDR)traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy.Specifically,we first summarize the framework of plant-based CDR(e.g.,CO_(2) capture,translocation,storage,and conversion to value-added products).Then,we highlight some representative biological parts,with experimental evidence,in this framework.Finally,we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants. 展开更多
关键词 dioxide ROOTS locating
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部