Clubroot caused by the protist Plasmodiophora brassicae is a major disease affecting cultivated Brassica-ceae.Using a combination of quantitative trait locus(QTL)fine mapping,CRISPR-Cas9 validation,and extensive analy...Clubroot caused by the protist Plasmodiophora brassicae is a major disease affecting cultivated Brassica-ceae.Using a combination of quantitative trait locus(QTL)fine mapping,CRISPR-Cas9 validation,and extensive analyses of DNA sequence and methylation patterns,we revealed that the two adjacent neigh-boring NLR(nucleotide-binding and leucine-rich repeat)genes AT5G47260 and AT5G47280 cooperate in controlling broad-spectrum quantitative partial resistance to the root pathogen P.brassicae in Arabidopsis and that they are epigenetically regulated.The variation in DNA methylation is not associated with any nucleotide variation or any transposable element presence/absence variants and is stably inherited.Vari-ations in DNA methylation at the Pb-At5.2 QTL are widespread across Arabidopsis accessions and corre-late negatively with variations in expression of the two genes.Our study demonstrates that natural,stable,and transgenerationally inherited epigenetic variations can play an important role in shaping resistance to plant pathogens by modulating the expression of immune receptors.展开更多
文摘Clubroot caused by the protist Plasmodiophora brassicae is a major disease affecting cultivated Brassica-ceae.Using a combination of quantitative trait locus(QTL)fine mapping,CRISPR-Cas9 validation,and extensive analyses of DNA sequence and methylation patterns,we revealed that the two adjacent neigh-boring NLR(nucleotide-binding and leucine-rich repeat)genes AT5G47260 and AT5G47280 cooperate in controlling broad-spectrum quantitative partial resistance to the root pathogen P.brassicae in Arabidopsis and that they are epigenetically regulated.The variation in DNA methylation is not associated with any nucleotide variation or any transposable element presence/absence variants and is stably inherited.Vari-ations in DNA methylation at the Pb-At5.2 QTL are widespread across Arabidopsis accessions and corre-late negatively with variations in expression of the two genes.Our study demonstrates that natural,stable,and transgenerationally inherited epigenetic variations can play an important role in shaping resistance to plant pathogens by modulating the expression of immune receptors.