期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interpenetrating polymers supported on microporous polypropylene membranes for the transport of chromium ions 被引量:1
1
作者 Yesid Tapiero julio sánchez BernabéL.Rivas 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第7期938-946,共9页
Modifying polypropylene membranes with interpenetrating polymer networks(IPNs) through the incorporation of poly(glycidyl methacrylate-N-methyl-D-glucamine)(P(GMA-NMG)) was performed by in situ synthesis via radical p... Modifying polypropylene membranes with interpenetrating polymer networks(IPNs) through the incorporation of poly(glycidyl methacrylate-N-methyl-D-glucamine)(P(GMA-NMG)) was performed by in situ synthesis via radical polymerization. The surface of the polypropylene membrane was activated by hydrophilic grafted polyelectrolyte, and then, pressure injection was used for the impregnation of the reactive solution in the membrane.Two types of pore-filled membranes were synthesized, chelating interpenetrating homopolymer networks of P(GMA-NMG), and chelating-ion exchange interpenetrating polymer networks(e.g., P(GMA-NMG)/P(AA),P(GMA-NMG)/P(AMPSA), and P(GMA-NMG)/P(Cl VBTA)). After their synthesis, the modified polypropylene membranes were characterized using techniques such as the electrokinetic potential, SEM, FT-IR, and Donnan dialysis to corroborate the chromium ion transport. The P(GMA-NMG) and complex network membranes exhibited a hydrophilic character with a water-uptake capacity between 20% and 35% and a percentage of modification between 4.0% and 7.0% in comparison with the behavior of the unmodified polypropylene membrane.Hexavalent chromium ions were efficiently transported from the food chamber at p H 9.0 when the 65.2%MTA1 P(Cl VBTA) homopolymer IPN membrane and 48.5% MTAG P(GMA-NMG)/P(Cl VBTA) IPN membrane were used. Similarly, hexavalent chromium ions were removed from the food chamber at pH 3.0 when MTAG(63.30%) and MTA1(35.68%) were used in 1 mol·L^(-1)Na Cl solution as the extraction reagent. 展开更多
关键词 六价铬离子 聚丙烯膜 互穿聚合物 聚合物互穿网络 聚合物改性 传输 微孔 原位合成
下载PDF
Electrochemical reduction of Cr(Ⅵ)in the presence of sodium alginate and its application in water purification 被引量:1
2
作者 Bryan Butter Paola santander +3 位作者 Guadalupe del CPizarro Diego POyarzún Federico Tasca julio sánchez 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第3期304-312,共9页
Chromium(Cr)is used in many manufacturing processes,and its release into natural waters is a major environmental problem today.Low concentrations of Cr(Ⅵ)are toxic to human health and living organisms due to the carc... Chromium(Cr)is used in many manufacturing processes,and its release into natural waters is a major environmental problem today.Low concentrations of Cr(Ⅵ)are toxic to human health and living organisms due to the carcinogenic and mutagenic nature of this mineral.This work examined the conversion of Cr(Ⅵ)to Cr(Ⅲ)via electrochemical reduction using gold electrode in an acidic sodium alginate(SA)solution and subsequent removal of the produced Cr(Ⅲ)-SA by the polymer-enhanced ultrafiltration(PEUF)technique.A solution of SA in nitric acid was used both as an electrolytic medium during the voltammetric measurements and bulk electrolysis and as an extracting agent during the PEUF technique.The electroanalysis of Cr(Ⅵ)was performed by linear sweep voltammetry in the presence of acidic SA solution to study its voltammetric behavior as a function of the Cr(Ⅵ)concentration,pH,presence of Cr(Ⅲ),SA concentration and scan rate.In addition,the quantitative reduction of Cr(Ⅵ)to Cr(Ⅲ)was studied through the bulk electrolysis technique.The results showed efficient reduction with well-defined peaks at approximately 0.3 V vs.Ag/AgCl,using a gold working electrode.As the pH increased,the reduction signal strongly decreased until its disappearance.The optimum SA concentration was 10 mmol/L,and it was observed that the presence of Cr(Ⅲ)did not interfere in the Cr(Ⅵ)electroanalysis.Through the quantitative reduction by bulk electrolysis in the presence of acidic SA solution,it was possible to reduce all Cr(Ⅵ)to Cr(Ⅲ)followed by its removal via PEUF. 展开更多
关键词 Alginate solution CHROMIUM Electroanalytical chemistry ULTRAFILTRATION Water purification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部