期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Structural, Spectral (IR and UV/Visible) and Thermodynamic Properties of Some 3d Transition Metal(II) Chloride Complexes of Glyoxime and Its Derivatives: A DFT and TD-DFT Study
1
作者 Ludovid Ngouo Nogheu julius numbonui ghogomu +3 位作者 Desire Bikele Mama Nyiang Kennet Nkungli Elie Younang Shridhar Ramachandra Gadre 《Computational Chemistry》 2016年第4期119-136,共18页
Metal complexes bearing vic-dioxime ligands have been extensively used as analytical and biochemical reagents, and are well-known antimicrobial agents. Herein is reported a DFT study on the molecular structures, therm... Metal complexes bearing vic-dioxime ligands have been extensively used as analytical and biochemical reagents, and are well-known antimicrobial agents. Herein is reported a DFT study on the molecular structures, thermodynamic properties, chemical reactivity and spectral properties of some 3d metal(II) chloride complexes of glyoxime. The functionals B3LYP and CAM-B3LYP have each been used in conjunction with LANL2DZ for the metal(II) ions (Fe<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup> and Cu<sup>2+</sup>) and the Poplestyle basis set 6-31G+(d,p) for the rest of the elements, to perform theoretical calculations. The metal complexation abilities of the glyoxime ligands studied in this work have been evaluated on the basis of metal-ligand binding energies. These ligands were found to have high affinities towards Ni(II) and Fe(II) ions, and all complexation reactions were found to be thermodynamically feasible. Ligand-to-metal electron donations in the complexes studied have been revealed by natural population analysis. The fully optimized geometries of the complexes have adopted square planar structures around the central metal ions. On the basis of orbital composition analysis, the UV-Vis electronic absorption bands of these molecules have been attributed mainly to MLCT, LMCT and d-d electronic transitions involving metal-based orbitals. 展开更多
关键词 Glyoxime Complexes DFT Binding Energy Electronic Absorption
下载PDF
DFT and TD-DFT Study of Bis[2-(5-Amino-[1,3,4]-Oxadiazol-2-yl) Phenol](Diaqua)M(II) Complexes [M = Cu, Ni and Zn]: Electronic Structures, Properties and Analyses 被引量:2
2
作者 Nyiang Kennet Nkungli julius numbonui ghogomu +1 位作者 Ludovid Ngouo Nogheu Shridhar Ramachandra Gadre 《Computational Chemistry》 2015年第3期29-44,共16页
Ground state geometries, spectral (IR and UV-Vis) properties, analysis of frontier molecular orbitals (FMOs), natural bond orbital (NBO) analysis and molecular electrostatic potential (MEP) surfaces of three transitio... Ground state geometries, spectral (IR and UV-Vis) properties, analysis of frontier molecular orbitals (FMOs), natural bond orbital (NBO) analysis and molecular electrostatic potential (MEP) surfaces of three transition metal complexes [Cu(AOYP)2(OH2)2] (A), [Ni(AOYP)2(OH2)2] (B) and [Zn-(AOYP)2(OH2)2] (C), have been studied theoretically by the Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods. AOYP is the oxadiazole ligand 2-(5-amino-[1,3,4]-oxadiazol-2-yl)phenol. The geometries of these complexes were initially optimized using two basis sets: LAN2DZ and a generic basis set, the latter of which was selected for subsequent analysis. The stability of the complexes arising from intramolecular interactions and electron delocalization was estimated by natural bond orbital (NBO) analysis. The NBO results showed significant charge transfer from lone pair orbitals on the AOYP donor atoms O19, O21, N15 and N36 to central metal ions in the complexes, as well as to the benzene and oxadiazole rings. The electronic spectrum of (A) showed bands at 752 and 550 nm mainly attributable to ligand-to-metal charge transfer (LMCT) transitions, and a band at 446 nm assigned to a d-d transition. The electronic spectrum of (B) consisted of bands at 540, 463 and 395 nm mainly due to d-d transitions. Calculated electronic bands for (C) occurred at 243, 238 and 235 nm, arising from intraligand charge transfer (ILCT) transitions within AOYP. A good agreement in terms of band positions was found between experimental and calculated absorption spectra of the complexes. 展开更多
关键词 DFT TD-DFT AOYP COMPLEXES NBO Analysis MEP Surfaces
下载PDF
Investigation of the Antioxidant and UV Absorption Properties of 2-(2’-hydroxy-5’-methylphenyl)-benzotriazole and Its Ortho-Substituted Derivatives via DFT/TD-DFT
3
作者 numbonui Stanley Tasheh Aymard Didier Tamafo Fouegue julius numbonui ghogomu 《Computational Chemistry》 2021年第3期161-196,共36页
The demand and pursuit of chemical entities with UV filtration and antioxidant properties for enhanced photoprotection have been driven in recent times by acute exposure of humans to solar ultraviolet radiations. The ... The demand and pursuit of chemical entities with UV filtration and antioxidant properties for enhanced photoprotection have been driven in recent times by acute exposure of humans to solar ultraviolet radiations. The structural, electronic, antioxidant and UV absorption properties of drometrizole (PBT) and designed ortho-substituted derivatives are reported via DFT and TD-DFT in the gas and aqueous phases. DFT and TD-DFT computations were performed at the M062x-D3Zero/6-311++G(d,p)//B97-3c and PBE0-D3(BJ)/def2-TZVP levels of theory respectively. Reaction enthalpies related to hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were computed and compared with those of phenol. Results show that the presence of -NH2 substituent reduces the O-H bond dissociation enthalpy and ionization potential, while that of -CN increases the proton affinity. The HAT and SPLET mechanisms are the most plausible in the gas and aqueous phases respectively. The molecule with the -NH2 substituent (PBT1) was identified to be the compound with the highest antioxidant activity. The UV spectra of the studied compounds are characterized by two bands in the 280 - 400 nm regions. Results from this study provide a better comprehension antioxidant mechanism of drometrizole and present a new perspective for the design of electron-donor antioxidant molecules with enhanced antioxidant-photoprotective efficiencies for applications in commercial sunscreens. 展开更多
关键词 ANTIOXIDANT Drometrizole Density Functional Theory Ultraviolet Absorption Hydrogen Atom Transfer Single Electron-Proton Transfer and Sequential Proton Loss Electron Transfer Mechanisms
下载PDF
A Quantum Chemical Screening of Two Imidazole-Chalcone Hybrid Ligands and Their Pd, Pt and Zn Complexes for Charge Transport and Nonlinear Optical (NLO) Properties: A DFT Study
4
作者 Fritzgerald Kogge Bine numbonui Stanley Tasheh julius numbonui ghogomu 《Computational Chemistry》 2021年第4期215-237,共23页
A quantum chemical screening of two imidazole-based chalcone ligands: 2-</span></span><span><span><span style="font-family:""> </span></span></span><sp... A quantum chemical screening of two imidazole-based chalcone ligands: 2-</span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol and 2-</span></span></span><span><span><span style="font-family:"">[1-(3-(1H-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol (hereinafter ref</span></span></span><span><span><span style="font-family:"">erred to as HL1 and HL2 respectively) and their Pd, Pt and Zn chelates for charge transport and nonlinear optical (NLO) properties, is reported via dispersion-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">corrected density functional theory (DFT-D3) and time-dependent DFT (TD-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">DFT) methods. From our results, Pd and Pt complexes have been observed to show excellent hole-transport properties, owing to their very small reorgani<span>zation energies. The <span>light </span>extraction efficiency of the HL1-Pt complex was de</span>duced to be particularly impressive, thus suitable for the manufacture of <span>hole transport</span> layer in violet light emitting diodes (LEDs). Moreover, redox potentials and chemical stability studies have enabled us </span></span></span><span><span><span style="font-family:"">to </span></span></span><span><span><span style="font-family:"">validate the greater <span>stability in moisture (towards oxidation), of HL2 complexes compared to th</span>eir HL1 counterparts. The first and second hyperpolarizabilities of both ligands and their complexes have been found to be outstandingly higher than those of the push-pull prototypical, <span>para</span>-nitroaniline by factors of up to 12 in the case of HL2. These compounds, with the exception of the HL2-Pt complex, are thus interesting candidates having wide transparency tradeoffs for NLO efficiency in the manufacture of optoelectronic and photonic devices capable of second and third-order NLO response. Finally, metal chelation has been established to enhance the NLO response of all the chalcone-based imidazole ligands investigated as a result of metal-ligand charge transfer and ligand-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">metal charge transfer electronic transitions identified in the resulting complexes with the exception of the zinc complexes. 展开更多
关键词 Density Functional Theory Time-Dependent Density Functional Theory Chalcone-Imidazoles Charge Transport and Nonlinear Optical Properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部