In this work,shape-stabilized solid-solid phase change materials(PCMs)were fabricated by simply electrospinning polyethylene glycol(PEG)and polyvinyl alcohol(PVA).Owing to the strong hydrogen bonds and entanglement be...In this work,shape-stabilized solid-solid phase change materials(PCMs)were fabricated by simply electrospinning polyethylene glycol(PEG)and polyvinyl alcohol(PVA).Owing to the strong hydrogen bonds and entanglement between those molecular chains of PEG and PVA,PEG was packaged by PVA.The morphological structures,thermal stability and thermal energy storage properties of those fibers were investigated.SEM results showed that those electrospun PVA/PEG composite membranes hold a three-dimensional nonwoven web structure even the content of PEG as high as 70%.The thermal energy storage ability of those composite fibers increased with the increase of the content of PEG.The heat enthalpies of PEG/PVA=7/3 were as high as 78.806 J/g.Moreover,those composite fibers had excellent thermal stability.After 100 heating and cooling cycles,there was almost no obvious change in the melting enthalpy and crystallization enthalpy.Those fibers still maintained good thermal regulation.The simple preparation process,low cost of raw materials and excellent stability endow the PCMs great utilization potentiality in smart textile and energy storage systems.展开更多
基金The project was supported by international cooperation of Prof.Jaromir Marek and Key Program for International S&T Innovation Cooperation Projects of China[2016YFE0131400]This project was supported by the Scientific Research Project of Department of Education of Zhejiang Province[19010035-F]This work was supported by Science Foundation of Zhejiang Sci-Tech University(ZSTU)under Grant No.19012393-Y.
文摘In this work,shape-stabilized solid-solid phase change materials(PCMs)were fabricated by simply electrospinning polyethylene glycol(PEG)and polyvinyl alcohol(PVA).Owing to the strong hydrogen bonds and entanglement between those molecular chains of PEG and PVA,PEG was packaged by PVA.The morphological structures,thermal stability and thermal energy storage properties of those fibers were investigated.SEM results showed that those electrospun PVA/PEG composite membranes hold a three-dimensional nonwoven web structure even the content of PEG as high as 70%.The thermal energy storage ability of those composite fibers increased with the increase of the content of PEG.The heat enthalpies of PEG/PVA=7/3 were as high as 78.806 J/g.Moreover,those composite fibers had excellent thermal stability.After 100 heating and cooling cycles,there was almost no obvious change in the melting enthalpy and crystallization enthalpy.Those fibers still maintained good thermal regulation.The simple preparation process,low cost of raw materials and excellent stability endow the PCMs great utilization potentiality in smart textile and energy storage systems.