This paper describes experiments with our self-built Wave Energy Convertor(WEC)monitoring system in the Maldives and demonstrates how we developed a horizontal-axis type,half-scale,wave energy converter(WEC)that gener...This paper describes experiments with our self-built Wave Energy Convertor(WEC)monitoring system in the Maldives and demonstrates how we developed a horizontal-axis type,half-scale,wave energy converter(WEC)that generates electricity in the coastal breaking wave zone.In order to measure this power generator and turbine’s efficiency,voltage and current were measured by pulling the generator with a 35 cm diameter turbine(half scale).We obtained data showing 400 W peak power in water speed of 3.1 m/s.Consequently,we assembled two sets of WEC,placed them near the shoreline on Kandooma Island in the Maldives in May 2018,and measured the wave energy at the breaking wave zone.A monitoring system was set up in one rack for the two sets of WECs,connected simultaneously.Two outputs of the generators were rectified and connected to power resistors and internal LED displays.The outputs could also be switched to connect to 24 electric double layer capacitors(EDLC),in order to perform a continuous lighting test of external high-power LED lights.The wave power data were continuously saved by an automated data logger and could be transferred from the installation site,to Japan via the Internet.The wave power was measured on Kandooma Island in the Maldives for a long period,and is still ongoing.Examples of the obtained data are shown in this paper.展开更多
文摘This paper describes experiments with our self-built Wave Energy Convertor(WEC)monitoring system in the Maldives and demonstrates how we developed a horizontal-axis type,half-scale,wave energy converter(WEC)that generates electricity in the coastal breaking wave zone.In order to measure this power generator and turbine’s efficiency,voltage and current were measured by pulling the generator with a 35 cm diameter turbine(half scale).We obtained data showing 400 W peak power in water speed of 3.1 m/s.Consequently,we assembled two sets of WEC,placed them near the shoreline on Kandooma Island in the Maldives in May 2018,and measured the wave energy at the breaking wave zone.A monitoring system was set up in one rack for the two sets of WECs,connected simultaneously.Two outputs of the generators were rectified and connected to power resistors and internal LED displays.The outputs could also be switched to connect to 24 electric double layer capacitors(EDLC),in order to perform a continuous lighting test of external high-power LED lights.The wave power data were continuously saved by an automated data logger and could be transferred from the installation site,to Japan via the Internet.The wave power was measured on Kandooma Island in the Maldives for a long period,and is still ongoing.Examples of the obtained data are shown in this paper.