In this paper,we study compressed data separation(CDS)problem,i.e.,sparse data separation from a few linear random measurements.We propose the nonconvex ℓ_(q)-split analysis with ℓ_(∞)-constraint and 0<q≤1.We cal...In this paper,we study compressed data separation(CDS)problem,i.e.,sparse data separation from a few linear random measurements.We propose the nonconvex ℓ_(q)-split analysis with ℓ_(∞)-constraint and 0<q≤1.We call the algorithm ℓ_(q)-split-analysis Dantzig selector(ℓ_(q)-split-analysis DS).We show that the two distinct subcomponents that are approximately sparse in terms of two different dictionaries could be stably approximated via the ℓ_(q)-split-analysis DS,provided that the measurement matrix satisfies either a classical D-RIP(Restricted Isometry Property with respect to Dictionaries and ℓ_(2) norm)or a relatively new(D,q)-RIP(RIP with respect to Dictionaries and ℓ_(q)-quasi norm)condition and the two different dictionaries satisfy a mutual coherence condition between them.For the Gaussian random measurements,the measurement number needed for the(D,q)-RIP condition is far less than those needed for the D-RIP condition and the(D,1)-RIP condition when q is small enough.展开更多
We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every bl...We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.展开更多
基金Supported by the National Key Research and Development Program of China(Grant No.2021YFA1003500)the NSFC(Grant Nos.U21A20426,11971427,12071426 and 11901518)。
文摘In this paper,we study compressed data separation(CDS)problem,i.e.,sparse data separation from a few linear random measurements.We propose the nonconvex ℓ_(q)-split analysis with ℓ_(∞)-constraint and 0<q≤1.We call the algorithm ℓ_(q)-split-analysis Dantzig selector(ℓ_(q)-split-analysis DS).We show that the two distinct subcomponents that are approximately sparse in terms of two different dictionaries could be stably approximated via the ℓ_(q)-split-analysis DS,provided that the measurement matrix satisfies either a classical D-RIP(Restricted Isometry Property with respect to Dictionaries and ℓ_(2) norm)or a relatively new(D,q)-RIP(RIP with respect to Dictionaries and ℓ_(q)-quasi norm)condition and the two different dictionaries satisfy a mutual coherence condition between them.For the Gaussian random measurements,the measurement number needed for the(D,q)-RIP condition is far less than those needed for the D-RIP condition and the(D,1)-RIP condition when q is small enough.
基金Supported by National Natural Science Foundation of China (Grant Nos. 11171299 and 91130009)Natural Science Foundation of Zhejiang Province of China (Grant No. Y6090091)
文摘We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.