期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Compressed Data Separation via ℓ_(q)-Split Analysis with ℓ_(∞)-Constraint
1
作者 Ming Yang Gu Song Li jun hong lin 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第7期1655-1673,共19页
In this paper,we study compressed data separation(CDS)problem,i.e.,sparse data separation from a few linear random measurements.We propose the nonconvex ℓ_(q)-split analysis with ℓ_(∞)-constraint and 0<q≤1.We cal... In this paper,we study compressed data separation(CDS)problem,i.e.,sparse data separation from a few linear random measurements.We propose the nonconvex ℓ_(q)-split analysis with ℓ_(∞)-constraint and 0<q≤1.We call the algorithm ℓ_(q)-split-analysis Dantzig selector(ℓ_(q)-split-analysis DS).We show that the two distinct subcomponents that are approximately sparse in terms of two different dictionaries could be stably approximated via the ℓ_(q)-split-analysis DS,provided that the measurement matrix satisfies either a classical D-RIP(Restricted Isometry Property with respect to Dictionaries and ℓ_(2) norm)or a relatively new(D,q)-RIP(RIP with respect to Dictionaries and ℓ_(q)-quasi norm)condition and the two different dictionaries satisfy a mutual coherence condition between them.For the Gaussian random measurements,the measurement number needed for the(D,q)-RIP condition is far less than those needed for the D-RIP condition and the(D,1)-RIP condition when q is small enough. 展开更多
关键词 Data separation ℓ_(q)-split analysis Dantzig selector FRAMES restricted isometry property compressed sensing
原文传递
Block Sparse Recovery via Mixed l_2/l_1 Minimization 被引量:10
2
作者 jun hong lin Song LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第7期1401-1412,共12页
We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every bl... We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307. 展开更多
关键词 Compressed sensing block RIP block sparsity mixed l2/l1 minimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部