期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tailored BiVO_(4)/In_(2)O_(3)nanostructures with boosted charge separation ability toward unassisted water splitting
1
作者 Mi Gyoung Lee Jin Wook Yang +10 位作者 Ik Jae Park Tae Hyung Lee Hoonkee Park Woo Seok Cheon Sol ALee Hyungsoo Lee Su Geun Ji jun min suh Jooho Moon Jin Young Kim Ho Won Jang 《Carbon Energy》 SCIE CSCD 2023年第6期45-59,共15页
The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron tr... The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron transport layer for bismuth vanadate(BiVO_(4))with a short charge diffusion length.In_(2)O_(3)NRs reinforce the electron transport and hole blocking of BiVO_(4),surpassing the state-of-the-art photoelectrochemical performances of BiVO_(4)-based photoanodes.Also,a tannin-nickel-iron complex(TANF)is used as an oxygen evolution catalyst to speed up the reaction kinetics.The final TANF/BiVO_(4)/In_(2)O_(3)NR photoanode generates photocurrent densities of 7.1 mAcm^(−2) in sulfite oxidation and 4.2 mA cm^(−2) in water oxidation at 1.23 V versus the reversible hydrogen electrode.Furthermore,the“artificial leaf,”which is a tandem cell with a perovskite/silicon solar cell,shows a solar-to-hydrogen conversion efficiency of 6.2%for unbiased solar water splitting.We reveal significant advances in the photoactivity of TANF/BiVO_(4)/In_(2)O_(3)NRs from the tailored nanostructure and band structure for charge dynamics. 展开更多
关键词 bismuth vanadate HETEROJUNCTION indium oxide NANOSTRUCTURE photoelectrochemical water splitting
下载PDF
Reduced graphene oxide-based materials for electrochemical energy conversion reactions 被引量:8
2
作者 Seokhoon Choi Changyeon Kim +1 位作者 jun min suh Ho Won Jang 《Carbon Energy》 CAS 2019年第1期85-108,共24页
There have been ever-growing demands to develop advanced electrocatalysts for renewable energy conversion over the past decade.As a promising platform for advanced electrocatalysts,reduced graphene oxide(rGO)has attra... There have been ever-growing demands to develop advanced electrocatalysts for renewable energy conversion over the past decade.As a promising platform for advanced electrocatalysts,reduced graphene oxide(rGO)has attracted substantial research interests in a variety of electrochemical energy conversion reactions.Its versatile utility is mainly attributed to unique physical and chemical properties,such as high specific surface area,tunable electronic structure,and the feasibility of structural modification and functionalization.Here,a comprehensive discussion is provided upon recent advances in the material preparation,characterization,and the catalytic activity of rGO-based electrocatalysts for various electrochemical energy conversion reactions(water splitting,CO2 reduction reaction,N2 reduction reaction,and O2 reduction reaction).Major advantages of rGO and the related challenges for enhancing their catalytic performance are addressed. 展开更多
关键词 CO2 reduction reaction ELECTROCATALYSIS N2 reduction reaction O2 reduction reaction reduced graphene oxide water splitting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部