DEAR EDITOR,Based upon morphological and molecular evidence,the authors revised the genus Rohanixalus Biju,Garg,Gokulakrishnan,Chandrakasan,Thammachoti,Ren,Gopika,Bisht,Hamidy and Shouche,2020(Anura:Rhacophoridae)in C...DEAR EDITOR,Based upon morphological and molecular evidence,the authors revised the genus Rohanixalus Biju,Garg,Gokulakrishnan,Chandrakasan,Thammachoti,Ren,Gopika,Bisht,Hamidy and Shouche,2020(Anura:Rhacophoridae)in China through describing one new species,adding one species to the fauna(R.shyamrupus)and supplementing data on one species(Rohanixalus hansenae;Supplementary Materials).展开更多
Hot tearing is one of the major defects in continuous casting of steels, which severely limits the productivity of steelmaking processes. To further understand the defect, the problem of hot tearing in duplex stainles...Hot tearing is one of the major defects in continuous casting of steels, which severely limits the productivity of steelmaking processes. To further understand the defect, the problem of hot tearing in duplex stainless steel produced by a vertical continuous caster was investigated. A three-dimensional heat transfer and elastic-plastic model was developed based on the realistic roller layout in continuous slab casting, using ProCAST software. According to the hot tearing indicator criterion, the influence of operating parameters on the hot tearing susceptibility was evaluated. The results show that the surface temperature distribution is not sensitive to the superheat. The center of wide surface shell at the mold exit is the thinnest, and the thickness is about 10.52 mm at the superheat temperature of 40 -C. The hot tearing mainly concentrates on the slab solidification front and near the narrow face. However, corner cracks are prone to appear near the corner. With the increase in casting speed and the decrease in the cooling intensity in the secondary cooling zone, the solidification end point is rushed, which leads to the position of hot tearing lowering accordingly.展开更多
基金supported by the Fundamental Research Fund for Central Universities (SWU-KR22014)National Natural Science Foundation of China (NSFC32170478,32370478)+8 种基金Yunnan Fundamental Research Project (202001AW070016,202005AC160046)“Special Fund for Youth Team of Southwest University” (SWU-XJPY202302)to Y.Z.Y.National Key R&D Program of China (2022YFC2602500)the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0501)Survey of Wildlife Resources in Key Areas of Xizang (ZL202203601)China’s Biodiversity Observation Network (Sino-BON)Animal Branch of Germplasm Bank of Wild Species,Chinese Academy of Sciences (Large Research Infrastructure Fund)to J.C.Unit of Excellence 2024 on Integrative diversity assessment of aquatic animals from Thailand (Fundamental FundFF67)to C.S。
文摘DEAR EDITOR,Based upon morphological and molecular evidence,the authors revised the genus Rohanixalus Biju,Garg,Gokulakrishnan,Chandrakasan,Thammachoti,Ren,Gopika,Bisht,Hamidy and Shouche,2020(Anura:Rhacophoridae)in China through describing one new species,adding one species to the fauna(R.shyamrupus)and supplementing data on one species(Rohanixalus hansenae;Supplementary Materials).
基金The authors gratefully express their appreciation to the National Natural Science Foundation of China(No.51474143)for the financial support.
文摘Hot tearing is one of the major defects in continuous casting of steels, which severely limits the productivity of steelmaking processes. To further understand the defect, the problem of hot tearing in duplex stainless steel produced by a vertical continuous caster was investigated. A three-dimensional heat transfer and elastic-plastic model was developed based on the realistic roller layout in continuous slab casting, using ProCAST software. According to the hot tearing indicator criterion, the influence of operating parameters on the hot tearing susceptibility was evaluated. The results show that the surface temperature distribution is not sensitive to the superheat. The center of wide surface shell at the mold exit is the thinnest, and the thickness is about 10.52 mm at the superheat temperature of 40 -C. The hot tearing mainly concentrates on the slab solidification front and near the narrow face. However, corner cracks are prone to appear near the corner. With the increase in casting speed and the decrease in the cooling intensity in the secondary cooling zone, the solidification end point is rushed, which leads to the position of hot tearing lowering accordingly.