期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stable Label-Specific Features Generation for Multi-Label Learning via Mixture-Based Clustering Ensemble
1
作者 Yi-Bo Wang jun-yi hang Min-Ling Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1248-1261,共14页
Multi-label learning deals with objects associated with multiple class labels,and aims to induce a predictive model which can assign a set of relevant class labels for an unseen instance.Since each class might possess... Multi-label learning deals with objects associated with multiple class labels,and aims to induce a predictive model which can assign a set of relevant class labels for an unseen instance.Since each class might possess its own characteristics,the strategy of extracting label-specific features has been widely employed to improve the discrimination process in multi-label learning,where the predictive model is induced based on tailored features specific to each class label instead of the identical instance representations.As a representative approach,LIFT generates label-specific features by conducting clustering analysis.However,its performance may be degraded due to the inherent instability of the single clustering algorithm.To improve this,a novel multi-label learning approach named SENCE(stable label-Specific features gENeration for multi-label learning via mixture-based Clustering Ensemble)is proposed,which stabilizes the generation process of label-specific features via clustering ensemble techniques.Specifically,more stable clustering results are obtained by firstly augmenting the original instance repre-sentation with cluster assignments from base clusters and then fitting a mixture model via the expectation-maximization(EM)algorithm.Extensive experiments on eighteen benchmark data sets show that SENCE performs better than LIFT and other well-established multi-label learning algorithms. 展开更多
关键词 Clustering ensemble expectation-maximization al-gorithm label-specific features multi-label learning
下载PDF
Learning label-specific features for decomposition-based multi-class classification
2
作者 Bin-Bin JIA jun-ying LIU +1 位作者 jun-yi hang Min-Ling Zhang 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第6期101-110,共10页
Multi-class classification can be solved by decomposing it into a set of binary classification problems according to some encoding rules,e.g.,one-vs-one,one-vs-rest,error-correcting output codes.Existing works solve t... Multi-class classification can be solved by decomposing it into a set of binary classification problems according to some encoding rules,e.g.,one-vs-one,one-vs-rest,error-correcting output codes.Existing works solve these binary classification problems in the original feature space,while it might be suboptimal as different binary classification problems correspond to different positive and negative examples.In this paper,we propose to learn label-specific features for each decomposed binary classification problem to consider the specific characteristics containing in its positive and negative examples.Specifically,to generate the label-specific features,clustering analysis is respectively conducted on the positive and negative examples in each decomposed binary data set to discover their inherent information and then label-specific features for one example are obtained by measuring the similarity between it and all cluster centers.Experiments clearly validate the effectiveness of learning label-specific features for decomposition-based multi-class classification. 展开更多
关键词 machine learning multi-class classification error-correcting output codes label-specific features
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部