Oxidation resistance enhancement of pure Ti often comes at the cost of reduced ductility,which is frequently the problem through alloying with sole Al,Si,W,Mo and B.To overcome the short coming of single element alloy...Oxidation resistance enhancement of pure Ti often comes at the cost of reduced ductility,which is frequently the problem through alloying with sole Al,Si,W,Mo and B.To overcome the short coming of single element alloying,this paper proposes a multi-element low-alloying strategy to take advantage of synergistic effects and resolve the conflict between oxidation resistance and ductility.It demonstrates that the addition of a small quantity of Ta(0.51wt%)can boost both oxidation resistance and ductility in comparison to pure Ti.Furthermore,the combined addition of a small amount(0.54 wt%)of Ta,Nb and Si not only preserves good ductility of pure Ti,but also reduces mass gains to 14%-67%of pure Ti during 100 h oxidation at 650-850℃in air.This indicates even better oxidation resistance than that obtained through the use of Ta,Nb,or Nb+Ta additions.The Ta+Nb+Si alloying creates an oxide layer that is less porous and more resistant to stratification and spalling.Consequently,a 3-μm N-rich layer can form in the Ti substrate beneath the oxide scale,in which phase transformation generates coherent Ti_(2)N with(0001)_(Ti)as the habit plane,with N atoms prefers to diffuse along■than along[0001]_(Ti).The completely transformed Ti_(2)N region or partially transformed Ti+Ti_(2)N region can effectively impede oxygen invasion.Therefore,the multielement low-alloying strategy is promising for enhancing both oxidation resistance and mechanical properties of metallic materials in the future.展开更多
The inner ear sensory epithelium consists of two major types of cells:hair cells(HCs)and supporting cells(SCs).Critical functions of HCs in the perception of mechanical stimulation and mechanosensory transduction have...The inner ear sensory epithelium consists of two major types of cells:hair cells(HCs)and supporting cells(SCs).Critical functions of HCs in the perception of mechanical stimulation and mechanosensory transduction have long been elucidated.SCs are indispensable components of the sensory epithelia,and they maintain the structural integrity and ionic environment of the inner ear.Once delicate inner ear epithelia sustain injuries(for example,due to ototoxic drugs or noise exposure),SCs respond immediately to serve as repairers of the epithelium and as adapters to become HC progenitors,aiming at morphological and functional recovery of the inner ear.This regenerative process is extensive in non-mammals,but is limited in the mammalian inner ear,especially in the mature cochlea.This review aimed to discuss the important roles of SCs in the repair of the mammalian inner ear.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52271088)Beijing Nova Program(2022 Beijing Nova Program Cross Cooperation Program No.20220484178)the National Key R&D Program of China(No.2016YFB0301200)。
文摘Oxidation resistance enhancement of pure Ti often comes at the cost of reduced ductility,which is frequently the problem through alloying with sole Al,Si,W,Mo and B.To overcome the short coming of single element alloying,this paper proposes a multi-element low-alloying strategy to take advantage of synergistic effects and resolve the conflict between oxidation resistance and ductility.It demonstrates that the addition of a small quantity of Ta(0.51wt%)can boost both oxidation resistance and ductility in comparison to pure Ti.Furthermore,the combined addition of a small amount(0.54 wt%)of Ta,Nb and Si not only preserves good ductility of pure Ti,but also reduces mass gains to 14%-67%of pure Ti during 100 h oxidation at 650-850℃in air.This indicates even better oxidation resistance than that obtained through the use of Ta,Nb,or Nb+Ta additions.The Ta+Nb+Si alloying creates an oxide layer that is less porous and more resistant to stratification and spalling.Consequently,a 3-μm N-rich layer can form in the Ti substrate beneath the oxide scale,in which phase transformation generates coherent Ti_(2)N with(0001)_(Ti)as the habit plane,with N atoms prefers to diffuse along■than along[0001]_(Ti).The completely transformed Ti_(2)N region or partially transformed Ti+Ti_(2)N region can effectively impede oxygen invasion.Therefore,the multielement low-alloying strategy is promising for enhancing both oxidation resistance and mechanical properties of metallic materials in the future.
基金supported by the National Natural Science Foundation of China(grant number 82371139,82371138,82101210 and 82171131)Beijing Hospital Authority Youth Program(grant number QML20230121).
文摘The inner ear sensory epithelium consists of two major types of cells:hair cells(HCs)and supporting cells(SCs).Critical functions of HCs in the perception of mechanical stimulation and mechanosensory transduction have long been elucidated.SCs are indispensable components of the sensory epithelia,and they maintain the structural integrity and ionic environment of the inner ear.Once delicate inner ear epithelia sustain injuries(for example,due to ototoxic drugs or noise exposure),SCs respond immediately to serve as repairers of the epithelium and as adapters to become HC progenitors,aiming at morphological and functional recovery of the inner ear.This regenerative process is extensive in non-mammals,but is limited in the mammalian inner ear,especially in the mature cochlea.This review aimed to discuss the important roles of SCs in the repair of the mammalian inner ear.