The replacement of liquid electrolyte with solid electrolyte can significantly improve the safety and power/energy density of lithium batteries.70Li_(2)S–30P_(2)S_(5) is one of the most promising solid electrolytes w...The replacement of liquid electrolyte with solid electrolyte can significantly improve the safety and power/energy density of lithium batteries.70Li_(2)S–30P_(2)S_(5) is one of the most promising solid electrolytes with high conductivity for solid–state batteries.In this work,the ionic conductivity and stability toward moisture and lithium metal of 70Li_(2)S–30P_(2)S_(5) were enhanced by introducing the different amounts of Li_(2)O additives.65Li_(2)S–30P_(2)S_(5)–1%Li_(2)O delivered the highest conductivity,while 65Li_(2)S–30P_(2)S_(5)–5%Li_(2)O showed the best moisture stability and improved lithium compatibility.Solid-state batteries using 65Li_(2)S–30P_(2)S_(5)–5%Li_(2)O electrolyte and high-voltage LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2) cathode exhibited low initial discharge capacity(100 mAh·g^(-1))and Coulombic efficiency(69%).Li_(3)InCl_(6) electrolytes were introduced both in the cathode mixture to replace sulfide electrolyte and in the interface layer to improve the cathode compatibility for the solid-state batteries,showing enhanced discharge capacity(175 mAh·g^(-1))and improved initial Coulombic efficiency(86%).Moreover,it also exhibited good performance at-20℃.展开更多
Lithium argyrodite electrolytes (Li_(6)PS_(5)X (X=Cl, Br, I))have received tremendous attention due to their low cost and high conductivity among sulfide electrolytes. However,the synthesis details and application of ...Lithium argyrodite electrolytes (Li_(6)PS_(5)X (X=Cl, Br, I))have received tremendous attention due to their low cost and high conductivity among sulfide electrolytes. However,the synthesis details and application of Li_(6)PS_(5)I in solidstate batteries have not been fully investigated yet. Here.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51821005,21975087,U1966214 and 51902116)the Certificate of China Postdoctoral Science Foundation Grant(No.2019M652634)We gratefully acknowledge the Analytical and Testing Center of HUST for allowing us to use its facilities.
文摘The replacement of liquid electrolyte with solid electrolyte can significantly improve the safety and power/energy density of lithium batteries.70Li_(2)S–30P_(2)S_(5) is one of the most promising solid electrolytes with high conductivity for solid–state batteries.In this work,the ionic conductivity and stability toward moisture and lithium metal of 70Li_(2)S–30P_(2)S_(5) were enhanced by introducing the different amounts of Li_(2)O additives.65Li_(2)S–30P_(2)S_(5)–1%Li_(2)O delivered the highest conductivity,while 65Li_(2)S–30P_(2)S_(5)–5%Li_(2)O showed the best moisture stability and improved lithium compatibility.Solid-state batteries using 65Li_(2)S–30P_(2)S_(5)–5%Li_(2)O electrolyte and high-voltage LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2) cathode exhibited low initial discharge capacity(100 mAh·g^(-1))and Coulombic efficiency(69%).Li_(3)InCl_(6) electrolytes were introduced both in the cathode mixture to replace sulfide electrolyte and in the interface layer to improve the cathode compatibility for the solid-state batteries,showing enhanced discharge capacity(175 mAh·g^(-1))and improved initial Coulombic efficiency(86%).Moreover,it also exhibited good performance at-20℃.
基金financially supported by the National Natural Science Foundation of China (Nos. 51821005, U1966214 and 51902116)the Certificate of China Postdoctoral Science Foundation Grant (No. 2019M652634)。
文摘Lithium argyrodite electrolytes (Li_(6)PS_(5)X (X=Cl, Br, I))have received tremendous attention due to their low cost and high conductivity among sulfide electrolytes. However,the synthesis details and application of Li_(6)PS_(5)I in solidstate batteries have not been fully investigated yet. Here.