期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Sensitivity of seismic attenuation and dispersion to dynamic elastic interactions of connected fractures: Quasi-static finite element modeling study 被引量:2
1
作者 Yan-Xiao He Wen-Tao He +8 位作者 Meng-Fan Zhang Jia-Liang Zhang Wei-Hua liu Xiao-Yi Ma Gen-Yang Tang Shang-Xu Wang Guo-Fa Li jun-zhou liu Xiang-Long Song 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期177-198,共22页
Prediction of seismic attenuation and dispersion that are inherently sensitive to hydraulic and elastic properties of the medium of interest in the presence of mesoscopic fractures and pores,is of great interest in th... Prediction of seismic attenuation and dispersion that are inherently sensitive to hydraulic and elastic properties of the medium of interest in the presence of mesoscopic fractures and pores,is of great interest in the characterization of fractured formations.This has been very difficult,however,considering that stress interactions between fractures and pores,related to their spatial distributions,tend to play a crucial role on affecting overall dynamic elastic properties that are largely unexplored.We thus choose to quantitatively investigate frequency-dependent P-wave characteristics in fractured porous rocks at the scale of a representative sample using a numerical scale-up procedure via performing finite element modelling.Based on 2-D numerical quasi-static experiments,effects of fracture and fluid properties on energy dissipation in response to wave-induced fluid flow at the mesoscopic scale are quantified via solving Biot's equations of consolidation.We show that numerical results are sensitive to some key characteristics of probed synthetic rocks containing unconnected and connected fractures,demonstrating that connectivity,aperture and inclination of fractures as well as fracture infills exhibit strong impacts on the two manifestations of WIFF mechanisms in the connected scenario,and on resulting total wave attenuation and phase velocity.This,in turn,illustrates the importance of these two WIFF mechanisms in fractured rocks and thus,a deeper understanding of them may eventually allow for a better characterization of fracture systems using seismic methods.Moreover,this presented work combines rock physics predictions with seismic numerical simulations in frequency domain to illustrate the sensitivity of seismic signatures on the monitoring of an idealized geologic CO_(2) sequestration in fractured reservoirs.The simulation demonstrates that these two WIFF mechanisms can strongly modify seismic records and hence,indicating that incorporating the two energy dissipation mechanisms in the geophysical interpretation can potentially improving the monitoring and surveying of fluid variations in fractured formations. 展开更多
关键词 Attenuation and dispersion Rock physics Fractured media Frequency dependence Numerical study
下载PDF
Construction of a novel brittleness index equation and analysis of anisotropic brittleness characteristics for unconventional shale formations 被引量:7
2
作者 Ke-Ran Qian Tao liu +3 位作者 jun-zhou liu Xi-Wu liu Zhi-Liang He Da-Jian Jiang 《Petroleum Science》 SCIE CAS CSCD 2020年第1期70-85,共16页
The brittleness prediction of shale formations is of interest to researchers nowadays.Conventional methods of brittleness prediction are usually based on isotropic models while shale is anisotropic.In order to obtain ... The brittleness prediction of shale formations is of interest to researchers nowadays.Conventional methods of brittleness prediction are usually based on isotropic models while shale is anisotropic.In order to obtain a better prediction of shale brittleness,our study firstly proposed a novel brittleness index equation based on the Voigt–Reuss–Hill average,which combines two classical isotropic methods.The proposed method introduces upper and lower brittleness bounds,which take the uncertainty of brittleness prediction into consideration.In addition,this method can give us acceptable predictions by using limited input values.Secondly,an anisotropic rock physics model was constructed.Two parameters were introduced into our model,which can be used to simulate the lamination of clay minerals and the dip angle of formation.In addition,rock physics templates have been built to analyze the sensitivity of brittleness parameters.Finally,the effects of kerogen,pore structure,clay lamination and shale formation dip have been investigated in terms of anisotropy.The prediction shows that the vertical/horizontal Young’s modulus is always below one while the vertical/horizontal Poisson’s ratio(PR)can be either greater or less than 1.Our study finds different degrees of shale lamination may be the explanation for the random distribution of Vani(the ratio of vertical PR to horizontal PR). 展开更多
关键词 BRITTLENESS SHALE Rock Physics ANISOTROPY Voigt–Reuss–Hill AVERAGE
下载PDF
Estimation of fracture density and orientation from azimuthal elastic impedance difference through singular value decomposition 被引量:3
3
作者 Lin Li Guang-Zhi Zhang +2 位作者 jun-zhou liu Lei Han Jia-Jia Zhang 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1675-1688,共14页
Accurate estimation of fracture density and orientation is of great significance for seismic characterization of fractured reservoirs.Here,we propose a novel methodology to estimate fracture density and orientation fr... Accurate estimation of fracture density and orientation is of great significance for seismic characterization of fractured reservoirs.Here,we propose a novel methodology to estimate fracture density and orientation from azimuthal elastic impedance(AEI)difference using singular value decomposition(SVD).Based on Hudson's model,we first derive the AEI equation containing fracture density in HTI media,and then obtain basis functions and singular values from the normalized AEI difference utilizing SVD.Analysis shows that the basis function changing with azimuth is related to fracture orientation,fracture density is the linearly weighted sum of singular values,and the first singular value contributes the most to fracture density.Thus,we develop an SVD-based fracture density and orientation inversion approach constrained by smooth prior elastic parameters.Synthetic example shows that fracture density and orientation can be stably estimated,and the correlation coefficient between the true value and the estimated fracture density is above 0.85 even when an S/N ratio of 2.Field data example shows that the estimated fracture orientation is consistent with the interpretation of image log data,and the estimated fracture density reliably indicates fractured gas-bearing reservoir,which could help to guide the exploration and development of fractured reservoirs. 展开更多
关键词 Singular value decomposition HTI media Azimuthal elastic impedance inversion Fracture density Fracture orientation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部