期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Structural,electronic,vibrational,and thermodynamic properties of Zr1-xHfxCo:A first-principles-based study 被引量:1
1
作者 刘俊超 袁志红 +5 位作者 李世长 孔祥刚 虞游 马生贵 桑革 高涛 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期483-490,共8页
The physical properties including structural,electronic,vibrational and thermodynamic properties of Zr1-xHfx Co(x is the concentration of constituent element Hf,and changes from 0 to 1) are investigated in terms of ... The physical properties including structural,electronic,vibrational and thermodynamic properties of Zr1-xHfx Co(x is the concentration of constituent element Hf,and changes from 0 to 1) are investigated in terms of the ABINIT program.The results reveal that all of Zr(1-x)Hfx Co have similar physical properties.When Hf concentration x gradually increases from 0.0 to 1.0,the lattice constant decreases from 3.217°A to 3.195°A very slowly.The calculated density of states(DOS)indicates that the metallic nature is enhanced and the electrical conductivity turns better with the increase of Hf.Moreover,as Hf concentration increases from 0 to 1,the Fermi energy gradually increases from-6.96 e V to-6.21 e V,and the electronic density of states at the Fermi level(N(Ef)) decreases from 2.795 electrons/e V f.u.down to 2.594 electrons/e V f.u.,both of which imply the decrease of chemical stability.The calculated vibrational properties show that the increase of Hf concentration from 0 to 1 causes the maximum vibrational frequency to decrease gradually from about 223 cm^-1 to 186 cm^-1,which suggests a lower dispersion gradient and lower phonon group velocities for these modes.Finally,the phonon related thermodynamic properties are obtained and discussed. 展开更多
关键词 Zr1-xHfxCo electronic properties vibrational properties thermodynamic properties
下载PDF
Single-material Solvent-sensitive Fluorescent Actuator from Carbon Dots Inverse Opals Based on Gradient Dewetting 被引量:1
2
作者 jun-chao liu Yuan-yuan Shang +3 位作者 Da-jie Zhang Zheng Xie 胡瑞祥 王京霞 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第9期1043-1043,1044-1050,共8页
A novel solvent-sensitive fluorescent actuator with reversibility has been obtained from carbon dots (CDs) inverse opals, which is prepared via infiltrating CDs solution into the interstice of colloidal crystal temp... A novel solvent-sensitive fluorescent actuator with reversibility has been obtained from carbon dots (CDs) inverse opals, which is prepared via infiltrating CDs solution into the interstice of colloidal crystal template, thermal polymerization of CDs materials and removing the colloidal template. The as-prepared CDs inverse opal actuator shows a bending angle of 75° in 10.2 s, bending rate of 7.35 (°).s-1. In particular, the fluorescence intensity of the films varies during the actuating process. The actuating behavior is attributed to the inhomogeneous swelling/shrinking of the film, which originates from the gradient dewetting by solvent evaporation and hydrogen-bonding interaction between the solvent molecules and oxygen/hydrogen ions of CDs side chain. The CDs inverse opal actuator has the advantages of quick response, good repeatability and strong fluorescence, which gives an important insight into the design and manufacture of novel and advanced solvent-actuators. 展开更多
关键词 Carbon dots inverse opal FLUORESCENT Single-material Gradient dewetting Solvent-actuator
原文传递
Fluorescence Retention of Organosilane-polymerized Carbon Dots Inverse Opals in CuCl Suspension
3
作者 Ping-Ping Wu jun-chao liu +2 位作者 Zheng Xie Jin-Shan Guo Jing-Xia Wang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第5期555-555,556-562,共8页
A novel and fluorescence retention inverse opal has been achieved from organosilane-polymerized carbon dots(SiCDs), which is prepared via infiltrating SiCD solution into the interstice of photonic crystal(PC) temp... A novel and fluorescence retention inverse opal has been achieved from organosilane-polymerized carbon dots(SiCDs), which is prepared via infiltrating SiCD solution into the interstice of photonic crystal(PC) template, low temperature treatment, heating polymerization and removing the colloidal template. The as-prepared SiCD inverse opals demonstrate close-cell structure, which is completely different from conventional open-cell structure. Then the fluorescence signal of as-prepared sample keeps almost unchanged in CuCl suspension while the fluorescence of SiCD solution can be quenched by CuCl suspension through an effective electron transfer process. This phenomenon can be attributed to the combined effect of high hydrostatic pressure in the pore structure, stable crosslinking network and fluorescence enhancement by PC structure. The SiCD inverse opals have advantages of unique close-cell structure, easy preparation and good repeatability that give an important insight into the design and manufacture of novel and advanced optical devices. 展开更多
关键词 Carbon dots Inverse opals Close-cell structure Fluorescence retention Inorganic salt solution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部