Sea level variability in the East China Sea (ECS) was examined based primarily on the analysis of TOPEX/Poseidon altimetry data and tide gauge data as well as numerical simulation with the Princeton ocean model (PO...Sea level variability in the East China Sea (ECS) was examined based primarily on the analysis of TOPEX/Poseidon altimetry data and tide gauge data as well as numerical simulation with the Princeton ocean model (POM). It is concluded that the inter-annual sea level variation in the ECS is negatively correlated with the ENSO index, and that the impact is more apparent in the southern area than in the northern area. Both data analysis and numerical model results also show that the sea level was lower during the typical E1 Niflo period of 1997 to 1998. E1 Nifio also causes the decrease of the annual sea level variation range in the ECS. This phenomenon is especially evident in the southern ECS. The impacts of wind stress and ocean circulation on the sea level variation in the ECS are also discussed in this paper. It is found that the wind stress most strongly affecting the sea level was in the directions of 70° and 20° south of east,, respectively, over the northern and southern areas of the ECS. The northwest wind is particularly strong when E1 Nifio occurs, and sea water is transported southeastward, which lowers the sea level in the southern ECS. The sea level variation in the southern ECS is also significantly affected by the strengthening of the Kuroshio. During the strengthening period of the Kuroshio, the sea level in the ECS usually drops, while the sea level rises when the Kuroshio weakens.展开更多
Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projec...Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor.展开更多
Combining sea level anomalies with the mean dynamic topography derived from the geoid of the EGM08 global gravity field model and the CLS01 mean sea surface height, this study examined the characteristics of global ge...Combining sea level anomalies with the mean dynamic topography derived from the geoid of the EGM08 global gravity field model and the CLS01 mean sea surface height, this study examined the characteristics of global geostrophic surface currents and the seasonal and interannual variabilities of the mean velocity of the Kuroshio (the Kuroshio source and Kuroshio extension). The patterns of global geostrophic surface currents we derived and the actual ocean circulation are basically the same. The mean velocity of the Kuroshio source is high in winter and low in fall, and its seasonal variability accounts for 18% of its total change. The mean velocity of the Kuroshio extension is high in summer and low in winter, and its seasonal variability accounts for 25% of its total change. The interannual variabilities of the mean velocity of the Kuroshio source and Kuroshio extension are significant. The mean velocity of the Kuroshio source and ENSO index are inversely correlated. However, the relationship between the mean velocity of the Kuroshio extension and the ENSO index is not clear. Overall, the velocity of the Kuroshio increases when La Nina occurs and decreases when E1 Nino occurs.展开更多
基金supported by the National Basic Research Program of China(973 program,Grant No 2007CB411807)the National Natural Science Foundation of China(Grants No40976006 and 40906002)+1 种基金the National Marine Public Welfare Research Project of China(Grant No201005019)the Project of Key Laboratory of Coastal Disasters and Defense of Ministry of Education of China(Grant No200802)
文摘Sea level variability in the East China Sea (ECS) was examined based primarily on the analysis of TOPEX/Poseidon altimetry data and tide gauge data as well as numerical simulation with the Princeton ocean model (POM). It is concluded that the inter-annual sea level variation in the ECS is negatively correlated with the ENSO index, and that the impact is more apparent in the southern area than in the northern area. Both data analysis and numerical model results also show that the sea level was lower during the typical E1 Niflo period of 1997 to 1998. E1 Nifio also causes the decrease of the annual sea level variation range in the ECS. This phenomenon is especially evident in the southern ECS. The impacts of wind stress and ocean circulation on the sea level variation in the ECS are also discussed in this paper. It is found that the wind stress most strongly affecting the sea level was in the directions of 70° and 20° south of east,, respectively, over the northern and southern areas of the ECS. The northwest wind is particularly strong when E1 Nifio occurs, and sea water is transported southeastward, which lowers the sea level in the southern ECS. The sea level variation in the southern ECS is also significantly affected by the strengthening of the Kuroshio. During the strengthening period of the Kuroshio, the sea level in the ECS usually drops, while the sea level rises when the Kuroshio weakens.
基金supported by the National Natural Science Foundation of China(Grants No.41206021 and 41276018)the National Basic Research Program of China(Grant No.2012CB955601)+2 种基金the Young Scientist Foundation of the State Oceanic Administration,China(Grant No.2012251)the U.S.National Science Foundation Belmont Forum Program(Grant No.ICER-1342644)the GASI-03-01-01-09
文摘Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor.
基金supported by the National Basic Research Program of China(973Program,Grant No.2007CB411807)the National Marine Public Welfare Research Project of China(Grants No.201005019,201105010-12,and201105009)the National Natural Science Foundation of China(Grants No.40976006and41276018-74)
文摘Combining sea level anomalies with the mean dynamic topography derived from the geoid of the EGM08 global gravity field model and the CLS01 mean sea surface height, this study examined the characteristics of global geostrophic surface currents and the seasonal and interannual variabilities of the mean velocity of the Kuroshio (the Kuroshio source and Kuroshio extension). The patterns of global geostrophic surface currents we derived and the actual ocean circulation are basically the same. The mean velocity of the Kuroshio source is high in winter and low in fall, and its seasonal variability accounts for 18% of its total change. The mean velocity of the Kuroshio extension is high in summer and low in winter, and its seasonal variability accounts for 25% of its total change. The interannual variabilities of the mean velocity of the Kuroshio source and Kuroshio extension are significant. The mean velocity of the Kuroshio source and ENSO index are inversely correlated. However, the relationship between the mean velocity of the Kuroshio extension and the ENSO index is not clear. Overall, the velocity of the Kuroshio increases when La Nina occurs and decreases when E1 Nino occurs.