This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress am...This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they fimcfion as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.展开更多
This paper seeks to investigate nonlinear out-of-plane mechanical behaviours of woven composite flexible skin(WCFS)through experimental and theoretical methods.Firstly,quasi-static experiments are carried out on recta...This paper seeks to investigate nonlinear out-of-plane mechanical behaviours of woven composite flexible skin(WCFS)through experimental and theoretical methods.Firstly,quasi-static experiments are carried out on rectangular WCFSs with different aspect ratios under uniform normal pressure to measure out-of-plane deformation and failure loads.Afterwards,a new three-parameter geometric model is presented to describe 3D geometry of pressurized WCFS,and thus,a nonlinear mechanical model is deduced for depicting the relationship between pressure and out-of-plane displacement.The application of the aforementioned models for experimental results shows that the new models have adequately and logically depicted deformation geometry and nonlinear mechanical characteristics.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51375033 and 51405006)
文摘This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they fimcfion as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.51875021)China Postdoctoral Science Foundation(Grant No.2022M720348).
文摘This paper seeks to investigate nonlinear out-of-plane mechanical behaviours of woven composite flexible skin(WCFS)through experimental and theoretical methods.Firstly,quasi-static experiments are carried out on rectangular WCFSs with different aspect ratios under uniform normal pressure to measure out-of-plane deformation and failure loads.Afterwards,a new three-parameter geometric model is presented to describe 3D geometry of pressurized WCFS,and thus,a nonlinear mechanical model is deduced for depicting the relationship between pressure and out-of-plane displacement.The application of the aforementioned models for experimental results shows that the new models have adequately and logically depicted deformation geometry and nonlinear mechanical characteristics.