Wind loading is a dominant factor for design of a cable-membrane structure. Three orthogonal turbulent components, including the longitudinal, lateral and vertical wind velocities, should be taken into account for the...Wind loading is a dominant factor for design of a cable-membrane structure. Three orthogonal turbulent components, including the longitudinal, lateral and vertical wind velocities, should be taken into account for the wind loads. In this study, a stochastic 3D coupling wind field model is derived by the spectral representation theory. The coherence functions of the three orthogonal turbulent components are considered in this model. Then the model is applied to generate the three correlated wind turbulent components. After that, formulae are proposed to transform the velocities into wind loads, and to introduce the modified wind pressure force. Finally, a wind-induced time-history response analysis is conducted for a 3D cable-membrane structure. Analytical results indicate that responses induced by the proposed wind load model are 10%-25% larger than those by the con- ventional uncorrelated model, and that the responses are not quite influenced by the modified wind pressure force. Therefore, we concluded that, in the time-history response analysis, the coherences of the three orthogonal turbulent components are necessary for a 3D cable-membrane structure, but the modified wind pressure force can be ignored.展开更多
基金Project (No. 2004Z3-E0351) supported by the Guangzhou Scientificand Technological Research Project, China
文摘Wind loading is a dominant factor for design of a cable-membrane structure. Three orthogonal turbulent components, including the longitudinal, lateral and vertical wind velocities, should be taken into account for the wind loads. In this study, a stochastic 3D coupling wind field model is derived by the spectral representation theory. The coherence functions of the three orthogonal turbulent components are considered in this model. Then the model is applied to generate the three correlated wind turbulent components. After that, formulae are proposed to transform the velocities into wind loads, and to introduce the modified wind pressure force. Finally, a wind-induced time-history response analysis is conducted for a 3D cable-membrane structure. Analytical results indicate that responses induced by the proposed wind load model are 10%-25% larger than those by the con- ventional uncorrelated model, and that the responses are not quite influenced by the modified wind pressure force. Therefore, we concluded that, in the time-history response analysis, the coherences of the three orthogonal turbulent components are necessary for a 3D cable-membrane structure, but the modified wind pressure force can be ignored.