期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel 被引量:4
1
作者 Wen-Ting Zhu jun-jun cui +2 位作者 Zhen-Ye Chen Yang Zhao Li-Qing Chen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第4期527-536,共10页
The present article aims at elucidating the effect of thermo-mechanical controlled processing(TMCP), especially the finish cooling temperature, on microstructure and mechanical properties of high strength low alloy st... The present article aims at elucidating the effect of thermo-mechanical controlled processing(TMCP), especially the finish cooling temperature, on microstructure and mechanical properties of high strength low alloy steels for developing superior low temperature toughness construction steel. The microstructural features were characterized by scanning electron microscope equipped with electron backscatter diffraction, and the mechanical behaviors in terms of tensile properties and impact toughness were analyzed in correlation with microstructural evolution. The results showed that the lower finish cooling temperature could lead to a considerable increase in impact toughness for this steel. A mixed microstructure was obtained by TMCP at lower finish cooling temperature, which contained much fine lath-like bainite with dot-shaped M/A constituent and less granular bainite and bainite ferrite. In this case, this steel possesses yield and ultimate tensile strengths of ~ 885 MPa and 1089 MPa, respectively, and a total elongation of ~ 15.3%, while it has a lower yield ratio of ~ 0.81. The superior impact toughness of ~ 89 J at-20 °C was obtained, and this was resulted from the multi-phase microstructure including grain refinement, preferred grain boundaries misorientation, fine lath-like bainite with dot-shaped M/A constituent. 展开更多
关键词 High strength low alloy steel Thermo-mechanical controlled processing(TMCP) Finish cooling temperature Microstructure Mechanical properties Impact toughness
原文传递
Influence of austempering process on microstructures and mechanical properties of V-containing alloyed ductile iron 被引量:1
2
作者 jun-jun cui Li-qing Chen 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第1期81-89,共9页
The influence of austempering time and vanadium addition on microstructure and mechanical properties of the alloyed ductile iron has been investigated. The 0.30 wt% V-containing and V-free alloyed ductile irons were f... The influence of austempering time and vanadium addition on microstructure and mechanical properties of the alloyed ductile iron has been investigated. The 0.30 wt% V-containing and V-free alloyed ductile irons were firstly austenitized at 850 ℃ for 1 h and then austempered in a salt bath at 300 ℃ for 2, 3 and 4 h, respectively. For the 0.3 wt% V-containing alloyed ductile iron, the transformation product (ausferrite) was finer, and a small amount of martensite and a large amount of stable austenite were obtained after austempering for 2 h, while higher hardness and compressive strength of 62.8 HRC and 3000 MPa were achieved. For the V-free alloyed ductile iron, lower hardness and compressive strength were measured to be 56.8 HRC and 2320 MPa. As the austempering time increases, the amount of stable austenite decreases in the V-containing ductile iron, typically for the start of the second stage formation (retained austenite (γτ) →α + carbide). Based on this, it is assumed that the optimal processing window (OPW) was narrowed due to the addition of 0.30 wt% V as compared to the V-free ductile iron. When the hardness of 0.30 wt% V-alloyed ductile iron was higher than 59 HRC, the highest wear resist- ance was obtained. The mechanical cutting plays a dominant role in abrasive wear process. 展开更多
关键词 Alloyed ductile iron VANADIUM AUSTEMPERING Microstructure Property Wear resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部