The effects of tempering holding time at 700℃on the morphology,mechanical properties,and behavior of nanoparticles in Ti-Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy a...The effects of tempering holding time at 700℃on the morphology,mechanical properties,and behavior of nanoparticles in Ti-Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy and transmission electron microscopy.The equilibrium solid solution amounts of Mo,Ti,and C in ferritic steel at various temperatures were calculated,and changes in the sizes of nanoparticles over time at different Mo contents were analyzed.The experimental results and theoretical calculations were in good agreement with each other and showed that the size of nanoparticles in middle Mo content nano-ferrite(MNF)steel changed the least during aging.High Mo contents inhibited the maturation and growth of nanoparticles,but no obvious inhibitory effect was observed when the Mo content exceeded 0.37wt%.The tensile strength and yield strength continuously decreased with the tempering time.Analysis of the strengthening and toughening mechanisms showed that the different mechanical properties among the three different Mo content experiment steels were mainly determined by grain refinement strengthening(the difference range was 30-40 MPa)and precipitation strengthening(the difference range was 78-127 MPa).MNF steel displayed an ideal chemical ratio and the highest thermodynamic stability,whereas low Mo content nano-ferrite(LNF)steel and high Mo content nano-ferrite(HNF)steel displayed relatively similar thermodynamic stabilities.展开更多
The microstructure and mechanical properties of NANOBAIN steel treated at different isothermal temperatures were investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),uniaxial ten...The microstructure and mechanical properties of NANOBAIN steel treated at different isothermal temperatures were investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),uniaxial tensile tests and X-ray diffraction(XRD).It was found that bainitic ferrite(BF)plate was made of basic shear transformation units arranged in the same direction of subunits.The existence of defects,such as nanoscale twinning and dislocation,suggested that the growth of transformation units was controlled by the surrounding defect plane with dislocation,which was consistent with the moving direction of BF/austenite interface parallel to the twinning plane.The behavior of work hardening indicated that mechanical stability of microstructures obtained at 250 ℃ and 300 ℃ was much more stable than that obtained at 210℃.The evolution of carbon partitioning in retained austenite and bainitic ferrite also indicated that austenite was enriched in carbon at the initial stage step by step;after the formation of BF,the austenite did not seem to be greatly enriched in carbon and the carbon content showed a little decrease instead;subsequently,aphenomenon of little decarburization of supersaturated bainitic ferrite has also been found.展开更多
基金the National Natural Science Foundation of China(No.51601174).
文摘The effects of tempering holding time at 700℃on the morphology,mechanical properties,and behavior of nanoparticles in Ti-Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy and transmission electron microscopy.The equilibrium solid solution amounts of Mo,Ti,and C in ferritic steel at various temperatures were calculated,and changes in the sizes of nanoparticles over time at different Mo contents were analyzed.The experimental results and theoretical calculations were in good agreement with each other and showed that the size of nanoparticles in middle Mo content nano-ferrite(MNF)steel changed the least during aging.High Mo contents inhibited the maturation and growth of nanoparticles,but no obvious inhibitory effect was observed when the Mo content exceeded 0.37wt%.The tensile strength and yield strength continuously decreased with the tempering time.Analysis of the strengthening and toughening mechanisms showed that the different mechanical properties among the three different Mo content experiment steels were mainly determined by grain refinement strengthening(the difference range was 30-40 MPa)and precipitation strengthening(the difference range was 78-127 MPa).MNF steel displayed an ideal chemical ratio and the highest thermodynamic stability,whereas low Mo content nano-ferrite(LNF)steel and high Mo content nano-ferrite(HNF)steel displayed relatively similar thermodynamic stabilities.
基金Item Sponsored by National Natural Science Foundation of China(51271035)
文摘The microstructure and mechanical properties of NANOBAIN steel treated at different isothermal temperatures were investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),uniaxial tensile tests and X-ray diffraction(XRD).It was found that bainitic ferrite(BF)plate was made of basic shear transformation units arranged in the same direction of subunits.The existence of defects,such as nanoscale twinning and dislocation,suggested that the growth of transformation units was controlled by the surrounding defect plane with dislocation,which was consistent with the moving direction of BF/austenite interface parallel to the twinning plane.The behavior of work hardening indicated that mechanical stability of microstructures obtained at 250 ℃ and 300 ℃ was much more stable than that obtained at 210℃.The evolution of carbon partitioning in retained austenite and bainitic ferrite also indicated that austenite was enriched in carbon at the initial stage step by step;after the formation of BF,the austenite did not seem to be greatly enriched in carbon and the carbon content showed a little decrease instead;subsequently,aphenomenon of little decarburization of supersaturated bainitic ferrite has also been found.