期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Selective TRPC3 Inhibitor Pyr3 Attenuates Myocardial Ischemia/Reperfusion Injury in Mice 被引量:3
1
作者 Min LU Xiao-xia FANG +6 位作者 Dan-dan SHI Rui LIU Yan DING Qiu-fang ZHANG Han-qin WANG jun-ming tang Xi-ju HE 《Current Medical Science》 SCIE CAS 2020年第6期1107-1113,共7页
An emerging body of evidence indicates that transient receptor potential TRP channels act as important mediators for a wide variety of physiological functions and are potential targets for drug discovery.Our previous ... An emerging body of evidence indicates that transient receptor potential TRP channels act as important mediators for a wide variety of physiological functions and are potential targets for drug discovery.Our previous study has identified transient receptor potential channel 3(TRPC3)and TRPC6 as cation channels through which most of the damaging calcium enters,aggravates pathological changes in vivo and increases ischemia/reperfusion(I/R)injury in mice.This study aimed to verify the effects of TRPC3 inhibitor Pyr3 on myocardial I/R injury in mice.C57BL/6J wild-type male mice(8 to 12 weeks old)were anesthetized with 3.3%chloral hydrate.A murine I(30 min)/R(24 h)injury model was established by temporary occlusion of the left anterior descending(LAD)coronary artery.Pyr3 was administered at concentrations of 0,2.5,5,or 10 mg/kg via the right jugular vein 5 min before reperfusion.We observed that the selective TRPC3 inhibitor,10 mg/kg Pyr3,significantly decreased the infarct size of left ventricle,and reduced the myocardial cell apoptosis rate and inflammatory response in mice.In a conclusion,TRPC3 can function as a candidate target for I/R injury prevention,and Pyr3 may directly bind to TRPC3 channel protein,inhibit TRPC3 channel activity,and improve TRPC3-related myocardial I/R injury.Pyr3 may be used for clarification of TRPC3 functions and for treatments of TRPC3-mediated diseases. 展开更多
关键词 ischemia/reperfusion injury TRPC3 Pyr3 APOPTOSIS
下载PDF
Common mtDNA variations at C5178a and A249d/T6392C/G10310A decrease the risk of severe COVID-19 in a Han Chinese population from Central China
2
作者 Yi Wu Xian-Hui Wang +13 位作者 Xi-Hua Lif Li-Yuan Song Shi-Long Yu Zhi-Cheng Fang Yu-Quan Liu Le-Yong Yuan Chun-Yan Peng Shen-Yi Zhang Wang Cheng Hong-Chao Ma Li-Feng Wang jun-ming tang Yun-Fu Wang Fu-Yun Ji 《Military Medical Research》 SCIE CSCD 2022年第1期53-62,共10页
Background:Mitochondria have been shown to play vital roles during severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection and coronavirus disease 2019(COVID-19)development.Currently,it is unclear whether... Background:Mitochondria have been shown to play vital roles during severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection and coronavirus disease 2019(COVID-19)development.Currently,it is unclear whether mitochondrial DNA(mtDNA)variants,which define mtDNA haplogroups and determine oxidative phosphorylation performance and reactive oxygen species production,are associated with COVID-19 risk.Methods:A population-based case-control study was conducted to compare the distribution of mtDNA variations defining mtDNA haplogroups between healthy controls(n=615)and COVID-19 patients(n=536).COVID-19 patients were diagnosed based on molecular diagnostics of the viral genome by qPCR and chest X-ray or computed tomography scanning.The exclusion criteria for the healthy controls were any history of disease in the month preceding the study assessment.MtDNA variants defining mtDNA haplogroups were identified by PCR-RFLPs and HVS-I sequencing and determined based on mtDNA phylogenetic analysis using Mitomap Phylogeny.Student’s t-test was used for continuous variables,and Pearson’s chi-squared test or Fisher’s exact test was used for categorical variables.To assess the independent effect of each mtDNA variant defining mtDNA haplogroups,multivariate logistic regression analyses were performed to calculate the odds ratios(OR)and 95%confidence intervals(CI)with adjustments for possible confounding factors of age,sex,smoking and diseases(including cardiopulmonary diseases,diabetes,obesity and hypertension)as determined through clinical and radiographic examinations.Results:Multivariate logistic regression analyses revealed that the most common investigated mtDNA variations(>10%in the control population)at C5178 a(in NADH dehydrogenase subunit 2 gene,ND2)and A249 d(in the displacement loop region,D-loop)/T6392 C(in cytochrome c oxidase I gene,CO1)/G10310 A(in ND3)were associated with a reduced risk of severe COVID-19(OR=0.590,95%CI 0.428–0.814,P=0.001;and OR=0.654,95%CI 0.457–0.936,P=0.020,respectively),while A4833 G(ND2),A4715 G(ND2),T3394 C(ND1)and G5417 A(ND2)/C16257 a(D-loop)/C16261 T(D-loop)were related to an increased risk of severe COVID-19(OR=2.336,95%CI 1.179–4.608,P=0.015;OR=2.033,95%CI 1.242–3.322,P=0.005;OR=3.040,95%CI 1.522–6.061,P=0.002;and OR=2.890,95%CI 1.199–6.993,P=0.018,respectively).Conclusions:This is the first study to explore the association of mtDNA variants with individual’s risk of developing severe COVID-19.Based on the case–control study,we concluded that the common mtDNA variants at C5178 a and A249 d/T6392 C/G10310 A might contribute to an individual’s resistance to developing severe COVID-19,whereas A4833 G,A4715 G,T3394 C and G5417 A/C16257 a/C16261 T might increase an individual’s risk of developing severe COVID-19. 展开更多
关键词 Mitochondrial DNA variations Severe acute respiratory syndrome coronavirus 2 Coronavirus disease 2019 RISK Han Chinese
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部