期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure and mechanical properties of a cast heat-resistant rare-earth magnesium alloy
1
作者 Xiao-ping Zhu jun-qing yao +6 位作者 Hai-long Wu Xin-wang Liu Hua Liu Zi-tian Fan Shu-lin Lü Kai Wang Zi-dong Wang 《China Foundry》 SCIE CAS CSCD 2023年第4期289-298,共10页
Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,ne... Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature. 展开更多
关键词 heat-resistant magnesium alloy rare earth microstructure phase transformation tensile property strengthening
下载PDF
Effect of partial recrystallization on microstructure and tensile properties of NiFeCoCrMn high-entropy alloy 被引量:8
2
作者 Hui DU Jia-hong CAI +4 位作者 Ya-song WANG jun-qing yao Qiang CHEN Yu CUI Xin-wang LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第3期947-956,共10页
To obtain a balance between strength and ductility in NiFeCoCrMn high-entropy alloy, the degree of dislocation strengthening was tuned via partial recrystallization during traditional thermomechanical processing(cold ... To obtain a balance between strength and ductility in NiFeCoCrMn high-entropy alloy, the degree of dislocation strengthening was tuned via partial recrystallization during traditional thermomechanical processing(cold rolling and recrystallization). The tensile properties in each state were then examined. Significant improvements in uniform elongation and work hardening rate, with decrease in yield strength and ultimate tensile strength, are associated with increase in the recrystallized fraction, i.e., reductions in the degree of strain hardening. In particular, recrystallized fractions of 37% and 74% are obtained by annealing at 650 ℃ for 10 min and 15 min, respectively, which results in yield strengths of 1003 MPa and 742 MPa and uniform elongations of 4% and 24%, respectively. The strengthening is due to the unrecrystallized grains with a high density of dislocations, whereas the ductility benefits from the presence of recrystallized strain-free grains. 展开更多
关键词 high-entropy alloy partial recrystallization MICROSTRUCTURE tensile property strengthening mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部