Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hap...Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell(hiPSC)-derived cardiomyocytes(CMs)and an adult mouse model of myocardial infarction.HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models,respectively.Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration.The results showed that recombinant human Hapln1(rhHapln1)promotes the proliferation of hiPSC-CMs in a dose-dependent manner.As a physical binding protein of Hapln1,versican interacted with Nodal growth differentiation factor(NODAL)and growth differentiation factor 11(GDF11).GDF11,but not NODAL,was expressed by hiPSC-CMs.GDF11 expression was unaffected by rhHapln1 treatment.However,this molecule was required for rhHapln1-mediated activation of the transforming growth factor(TGF)-β/Drosophila mothers against decapentaplegic protein(SMAD)2/3 signaling in hiPSC-CMs,which stimulates cell dedifferentiation and proliferation.Recombinant mouse Hapln1(rmHapln1)could induce cardiac regeneration in the adult mouse model of myocardial infarction.In addition,rmHapln1 induced hiPSC-CM proliferation.In conclusion,Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway.Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.展开更多
The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investi- gated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350 ℃ for 12 h in a...The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investi- gated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350 ℃ for 12 h in a closed vessel containing an appropriate amount of bis(cyclopentadienyl)cobalt powder and dry ice. Characterization by a variety of techniques, including X-ray powder diffraction, X-ray photoelectron spectroscopy, TransmissiOn electron microscope, Fourier transform infrared spectrum and Raman spectroscopy analysis reveals that each cobalt-carbon core-shell microsphere is made up of an amorphous cobalt core with diameter less than 1 μm and an amorphous carbon shell with thickness of about 200 nm. The possible growth mechanism of cobalt-carbon core-shell microspheres is discussed, based on the pyrolysis of bis(cyclopentadienyl)cobalt in supercritical carbon dioxide and the deposition of carbon or carbon clusters with odd electrons on the surface of magnetic cobalt cores due to magnetic attraction. Magnetic measurements show 141.41 emu/g of saturation magnetization of a typical sample, which is lower than the 168 emu/g of the corresponding metal cobalt bulk material. This is attributed to the considerable mass of the carbon shell and amorphous nature of the magnetic core. Control of magnetism in the cobalt-carbon core-shell microspheres was achieved by annealing treatments.展开更多
基金Shaanxi Province Natural Science Foundation,China(Grant No.:2021JM-568).
文摘Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell(hiPSC)-derived cardiomyocytes(CMs)and an adult mouse model of myocardial infarction.HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models,respectively.Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration.The results showed that recombinant human Hapln1(rhHapln1)promotes the proliferation of hiPSC-CMs in a dose-dependent manner.As a physical binding protein of Hapln1,versican interacted with Nodal growth differentiation factor(NODAL)and growth differentiation factor 11(GDF11).GDF11,but not NODAL,was expressed by hiPSC-CMs.GDF11 expression was unaffected by rhHapln1 treatment.However,this molecule was required for rhHapln1-mediated activation of the transforming growth factor(TGF)-β/Drosophila mothers against decapentaplegic protein(SMAD)2/3 signaling in hiPSC-CMs,which stimulates cell dedifferentiation and proliferation.Recombinant mouse Hapln1(rmHapln1)could induce cardiac regeneration in the adult mouse model of myocardial infarction.In addition,rmHapln1 induced hiPSC-CM proliferation.In conclusion,Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway.Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.
基金ACKNOWLEDGMENT This work was supported Science Foundation of China by the National Natural (No.20273066).
文摘The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investi- gated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350 ℃ for 12 h in a closed vessel containing an appropriate amount of bis(cyclopentadienyl)cobalt powder and dry ice. Characterization by a variety of techniques, including X-ray powder diffraction, X-ray photoelectron spectroscopy, TransmissiOn electron microscope, Fourier transform infrared spectrum and Raman spectroscopy analysis reveals that each cobalt-carbon core-shell microsphere is made up of an amorphous cobalt core with diameter less than 1 μm and an amorphous carbon shell with thickness of about 200 nm. The possible growth mechanism of cobalt-carbon core-shell microspheres is discussed, based on the pyrolysis of bis(cyclopentadienyl)cobalt in supercritical carbon dioxide and the deposition of carbon or carbon clusters with odd electrons on the surface of magnetic cobalt cores due to magnetic attraction. Magnetic measurements show 141.41 emu/g of saturation magnetization of a typical sample, which is lower than the 168 emu/g of the corresponding metal cobalt bulk material. This is attributed to the considerable mass of the carbon shell and amorphous nature of the magnetic core. Control of magnetism in the cobalt-carbon core-shell microspheres was achieved by annealing treatments.