Optical true delay lines(OTDLs)of low propagation losses,small footprints and high tuning speeds and efficiencies are of critical importance for various photonic applications.Here,we report fabrication of electro-opti...Optical true delay lines(OTDLs)of low propagation losses,small footprints and high tuning speeds and efficiencies are of critical importance for various photonic applications.Here,we report fabrication of electro-optically switchable OTDLs on lithium niobate on insulator using photolithography assisted chemo-mechanical etching.Our device consists of several low-loss optical waveguides of different lengths which are consecutively connected by electro-optical switches to generate different amounts of time delay.The fabricated OTLDs show an ultra-low propagation loss of^0.03dB/cm for waveguide lengths well above 100 cm.展开更多
基金Supported by the National Key R&D Program of China(Grant No.2019YFA0705000)the National Natural Science Foundation of China(Grant Nos.11734009,61590934,and 11874375)+1 种基金the Strategic Priority Research Program of CAS(Grant No.XDB16030300)the Key Project of the Shanghai Science and Technology Committee(Grant No.17JC1400400).
文摘Optical true delay lines(OTDLs)of low propagation losses,small footprints and high tuning speeds and efficiencies are of critical importance for various photonic applications.Here,we report fabrication of electro-optically switchable OTDLs on lithium niobate on insulator using photolithography assisted chemo-mechanical etching.Our device consists of several low-loss optical waveguides of different lengths which are consecutively connected by electro-optical switches to generate different amounts of time delay.The fabricated OTLDs show an ultra-low propagation loss of^0.03dB/cm for waveguide lengths well above 100 cm.