Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater o...Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater on Si is fabricated.The photoluminescence properties of the Ga N beam cavity are controlled by temperature, and the Joule heater provides electrically driven regulation of temperature. These two features of the cavity make it possible to realize convenient tuning of the lasing properties. The multi-functional Ga N beam cavity achieves optically pumped lasing with a single mode near 362.4 nm with a high Q-factor of 1394. The temperature of this device increases by 0–5℃ under the Joule heating effect. Then, electrical control of the lasing mode is demonstrated. The lasing resonant peak shows a continuous redshift of about 0.5 nm and the device also exhibits dynamic switching of its lasing mode. The lasing modulation can be ascribed to temperature-induced reduction of the bandgap. Our work may be of benefit for external optical modulation in future chip-based optoelectronic devices.展开更多
The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over ...The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over a developing transverse dune at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert. The transport rate versus wind speed relationship relationships over flat surfaces and over dunes that are s complicated over a developing dune compared with the n equilibrium with the wind. We obtained trend lines for transport rate over the transverse dune versus distance. The transport rate generally increased from the toe to the crest above the stoss slope, but the difference in transport rate between the crest and the toe was smaller than those that have been proposed for taller dunes. The crest/toe ratio for transport rates therefore seems to depend greatly on dune height. Flux density profiles for different points above the dune at different wind speeds were well described by the exponential decay law, as has been proposed for saltation flux density profiles. Coefficients in the flux density profile function can be defined in terms of the transport rate and wind speed. However, the dependence of relative decay rate with height and average saltation height on wind speed was weaker than that observed in a wind tunnel and above a fiat surface. The preliminary results obtained in this study require more evidence from field observations to fully describe aeolian transport above developing dunes.展开更多
Maqu County is located in the northeast Qinghai-Tibetan Plateau, and it is the main watershed for the Yellow River. The ecosystem there is extremely vulnerable and sensitive to climate change and human activities, whi...Maqu County is located in the northeast Qinghai-Tibetan Plateau, and it is the main watershed for the Yellow River. The ecosystem there is extremely vulnerable and sensitive to climate change and human activities, which have caused significant deterioration of the eco-environment in this region. In order to restore the ecological environment, a government project to restore the grazing areas to grassland was implemented in Maqu County in early 2004. This study evaluates the effects of that restoration project on land use and land cover change (LUCC), and explores the driving forces of LUCC in Maqu County. In the study we used Landsat images obtained in 1989, 2004, 2009, and 2014 to establish databases of land use and land cover. Then we derived LUCC information by overlaying these layers using GIS software. Finally, we analyzed the main forces responsible for LUCC. The results showed that forests, high-coverage grasslands, and marshes experienced the most significant decreases during 1989–2004, by 882.8 ha, 35,250.4 ha, and 2,753.4 ha, respectively. However, moderate- and low-coverage grasslands and sand lands showed the opposite trend, increasing by 12,529.7 ha, 25,491.0 ha, and 577.5 ha, respectively. LUCC in 2004–2009 showed that ecological degradation slowed compared with 1989?2004. During 2009–2014, high- and moderate-coverage grasslands increased obviously, but low-coverage grasslands, marshes, unused lands, sand lands, and water areas showed the opposite trend. These results suggested that the degradation of the eco-environment was obvious before 2009, showing a decrease in the forests, grasslands, and water areas, and an increase in unused lands. The ecological degradation was reversed after 2009, as was mainly evidenced by increases in high- and mod-erate-coverage grasslands, and the shrinkage rate of marshes decreased obviously. These results showed that the project of restoring grazing lands to grassland had a positive effect on the LUCC. Other major factors that influence the LUCC include increasing temperature, variation in the seasonal frozen soil environment, seasonal overgrazing, and pest and rodent damage.展开更多
Using an identical monolithic InGaN/GaN light emitting diode (LED) array as the sensing module and a well-designed data processing module, we demonstrate a small-size concentration sensing prototype. Overlap between t...Using an identical monolithic InGaN/GaN light emitting diode (LED) array as the sensing module and a well-designed data processing module, we demonstrate a small-size concentration sensing prototype. Overlap between the emission and the response spectra of the InGaN/GaN LED makes each pair of LEDs in the arrayed chip form a sensing channel. The changes in liquid concentration can be transformed into variation of photocurrent. The system's sensing properties are further optimized by varying the position, number of receivers, and packaging reflectors. With methyl orange as a tracer agent, the sensing system's resolution is 0.286 μmol/L with a linear measurement region below 40 μmol/L.展开更多
The association of neurogenesis and gliogenesis with glioma remains unclear.By conducting single-cell RNA-seq analyses on 26 gliomas,we reported their classification into primitive oligodendrocyte precursor cell(pri-O...The association of neurogenesis and gliogenesis with glioma remains unclear.By conducting single-cell RNA-seq analyses on 26 gliomas,we reported their classification into primitive oligodendrocyte precursor cell(pri-OPC)-like and radial glia(RG)-like tumors and validated it in a public cohort and TCGA glioma.The RG-like tumors exhibited wild-type isocitrate dehydrogenase and tended to carry EGFR mutations,and the pri-OPC-like ones were prone to carrying TP53 mutations.Tumor subclones only in pri-OPC-like tumors showed substantially down-regulated MHC-I genes,suggesting their distinct immune evasion programs.Furthermore,the two subgroups appeared to extensively modulate glioma-infiltrating lymphocytes in distinct manners.Some specific genes not expressed in normal immune cells were found in glioma-infiltrating lymphocytes.For example,glial/glioma stem cell markers OLIG1/PTPRZ1 and B cell-specific receptors IGLC2/IGKC were expressed in pri-OPC-like and RG-like glioma-infiltrating lymphocytes,respectively.Their expression was positively correlated with those of immune checkpoint genes(e.g.,LGALS33)and poor survivals as validated by the increased expression of LGALS3 upon IGKC overexpression in Jurkat cells.This finding indicated a potential inhibitory role in tumor-infiltrating lymphocytes and could provide a new way of cancer immune evasion.展开更多
Electrocatalytic depolymerization of lignin into value-added chemicals offers a promising technique to make biorefining sustainable.Herein,we report a robust trimetallic PdNiBi electrocatalyst for reductive C–O bond ...Electrocatalytic depolymerization of lignin into value-added chemicals offers a promising technique to make biorefining sustainable.Herein,we report a robust trimetallic PdNiBi electrocatalyst for reductive C–O bond cleavage of different lignin model dimers and oxidized lignin under mild conditions.The reduction reaction proceeds with complete substrate conversion and excellent yields toward monomers of phenols(80%–99%)and acetophenones(75%–96%)in the presence of an ionic liquid electrolyte with operational stability.Systematic experimental investigations together with density functional theory(DFT)calculations reveal that the outstanding performance of the catalyst results from the synergistic effect of the metal elements,which facilitates the easier formation of a key Cαradical intermediate and the facile desorption of the as-formed products at the electrode.The results open up new opportunities for lignin valorization through the green electrocatalytic approach.展开更多
Collective oscillations of free electrons generate plasmons on the surface of a material. A whispering-gallery microcavity effectively confines the light field on its surface based on the total reflection from its int...Collective oscillations of free electrons generate plasmons on the surface of a material. A whispering-gallery microcavity effectively confines the light field on its surface based on the total reflection from its internal wall. When these two kinds of electromagnetic waves meet each other, the stimulated emissions from an individual ZnO microrod were enhanced more than 50-fold and the threshold was reduced after the whispering-gallery microcavity was coated with a monolayer of graphene and A1 nanoparticles. The improvement of the lasing performance was attributed to the synergistic energy coupling of the graphene/A1 surface plasmons with ZnO excitons. The lasing characteristics and the coupling mechanism were investigated systematically.展开更多
In spite of the explosive rise of research on memristive switching,more improvements in tunability,versatility,and hetero-integration are required through the discovery and application of novel materials.Herein,we rep...In spite of the explosive rise of research on memristive switching,more improvements in tunability,versatility,and hetero-integration are required through the discovery and application of novel materials.Herein,we report resistance switching in nano-thick two-dimensional(2D)crystals of bismuth selenium(BiSe).The BiSe devices exhibit nonvolatile bipolar resistance switching,volatile switching,and electrical bistable behavior in different conditions.The different memristive behavior of BiSe devices may be related to the concentration of Bi ions in this Bi-rich structure,which directly affects the capability of filaments forming.Furthermore,the external mechanical strain is applied in modulation of multi-layer BiSe devices.The memristive BiSe devices show a large on/off ratio of~10^(4)and retention time of~104 s.The discovery of memristive switching behavior in multi-layer BiSe is attributed to the forming of Bi filaments.The resistance switching behavior in multi-layer BiSe demonstrates the potential application in the flexible memories and functional integrated devices.展开更多
As a direct bandgap semiconductor, organic-inorganic lead halide perovskite (MAPbX3, MA = CH3NH3, X =Cl, Br, I) have been considered as promising materials for laser due to their excellent optoelectronic properties. T...As a direct bandgap semiconductor, organic-inorganic lead halide perovskite (MAPbX3, MA = CH3NH3, X =Cl, Br, I) have been considered as promising materials for laser due to their excellent optoelectronic properties. The perovskite materials with ID and 2D shapes were widely prepared and studied for Fabry-Perot mode and whispering-gallery-mode (WGM) microcavities, but cuboid-shape is rarely reported. In this work, we successfully fabricated single crystal cuboid-shaped MAPbBr3 perovskite w让h different morphologies, named microcuboid-MAPbBr3 (M-MAPbBr3) and multi-step-MAPbBr3 (MSMAPbBr3), via solvothermal method. Furthermore, the as-prepared *crystals excitonic recombination lifetime under different pumping energy density was studied by time-resolved photoiuminescence (TRPL). Based on controllable morphology and remarkable lasing properties, these cuboid shaped single crystal perovskite could be a promising candidate for small laser, and other optoelectronic devices.展开更多
It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied na...It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities. This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision. Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles. The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher side- mode suppression ratio and lower threshold. The mechanism that led to this enhancement has been described in detail.展开更多
Collaborative enhancements from surface plasmons (SPs) and whispering-gallery modes (WGMs) can induce intense near-field effects with high spatial localization around the surface of a semiconducting material. One ...Collaborative enhancements from surface plasmons (SPs) and whispering-gallery modes (WGMs) can induce intense near-field effects with high spatial localization around the surface of a semiconducting material. One can construct a highly efficient hybrid microcavity using semiconducting materials through resonant coupling between SPs and WGMs. Hexagonal ZnO micro-/nanostructures, which have been employed as natural WGM microcavities for ultraviolet (UV) lasing, can be used as ideal platforms to construct such hybrid microcavities. Here, we comprehensively review the recent efforts for improving lasing performance by resonant coupling between SPs and WGMs. Traditional SPs originating from various metals as well as novel SPs originating from atomic layers such as graphene are considered. Moreover, we discuss the mechanism of light-matter interactions beyond the improvements in lasing performance.展开更多
The protection of language function is one of the major challenges of brain surgery.Over the past century,neurosurgeons have attempted to seek the optimal strategy for the preoperative and intraoperative identificatio...The protection of language function is one of the major challenges of brain surgery.Over the past century,neurosurgeons have attempted to seek the optimal strategy for the preoperative and intraoperative identification of language-related brain regions.Neurosurgeons have investigated the neural mechanism of language,developed neurolinguistics theory,and provided unique evidence to further understand the neural basis of language functions by using intraoperative cortical and subcortical electrical stimulation.With the emergence of modern neuroscience techniques and dramatic advances in language models over the last 25 years,novel language mapping methods have been applied in the neurosurgical practice to help neurosurgeons protect the brain and reduce morbidity.The rapid advancements in brain-computer interface have provided the perfect platform for the combination of neurosurgery and neurolinguistics.In this review,the history of neurolinguistics models,advancements in modern technology,role of neurosurgery in language mapping,and modern language mapping methods(including noninvasive neuroimaging techniques and invasive cortical electroencephalogram)are presented.展开更多
Background:Traumatic brain injury,one of the leading causes of death in adults under 40 years of age in the world,is frequently caused by mechanical shock,resulting in diffuse neuronal damage and long-term cognitive d...Background:Traumatic brain injury,one of the leading causes of death in adults under 40 years of age in the world,is frequently caused by mechanical shock,resulting in diffuse neuronal damage and long-term cognitive dysfunction.Many existing TBI animal models revival with expensive equipment or special room are needed or the processes of operations are complex and not easy to be widely used.Therefore,a simpler TBI model needs to be designed.Methods:Our TBI model is an innovation of the modeling method through air guns shutting rubber bullets.A core facet is the application of our designed rubber bullet impact device.It could focus the hitting power to the fixed site of the brain,thus triggering a mild closed head injury.Moreover,the degree of damage can be adjusted by the times of shots.Results:Our model induced blood-brain barrier leakage and diffused neuronal damage.Besides,it led to an increased level of Tau phosphorylation and resulted in cognitive dysfunction within several weeks post-injury.Conclusion:Our TBI model is not only simple and time-saving but also can simulate mild brain injuries in clinical.It is suitable for exploring pathobiological mechanisms as well as a screening of potential therapies for TBI.展开更多
基金the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210593)the Foundation of Jiangsu Provincial Double Innovation Doctor Program (Grant No. 30644)+2 种基金the National Natural Science Foundation of China (Grant No. 62204127)State Key Laboratory of Luminescence and Applications (Grant No. SKLA 202104)open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications, Ministry of Education)。
文摘Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a Ga N-based laser with an integrated PN junction heater on Si is fabricated.The photoluminescence properties of the Ga N beam cavity are controlled by temperature, and the Joule heater provides electrically driven regulation of temperature. These two features of the cavity make it possible to realize convenient tuning of the lasing properties. The multi-functional Ga N beam cavity achieves optically pumped lasing with a single mode near 362.4 nm with a high Q-factor of 1394. The temperature of this device increases by 0–5℃ under the Joule heating effect. Then, electrical control of the lasing mode is demonstrated. The lasing resonant peak shows a continuous redshift of about 0.5 nm and the device also exhibits dynamic switching of its lasing mode. The lasing modulation can be ascribed to temperature-induced reduction of the bandgap. Our work may be of benefit for external optical modulation in future chip-based optoelectronic devices.
基金funding from the National Natural Science Foundation of China (41130533, 41171010)
文摘The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over a developing transverse dune at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert. The transport rate versus wind speed relationship relationships over flat surfaces and over dunes that are s complicated over a developing dune compared with the n equilibrium with the wind. We obtained trend lines for transport rate over the transverse dune versus distance. The transport rate generally increased from the toe to the crest above the stoss slope, but the difference in transport rate between the crest and the toe was smaller than those that have been proposed for taller dunes. The crest/toe ratio for transport rates therefore seems to depend greatly on dune height. Flux density profiles for different points above the dune at different wind speeds were well described by the exponential decay law, as has been proposed for saltation flux density profiles. Coefficients in the flux density profile function can be defined in terms of the transport rate and wind speed. However, the dependence of relative decay rate with height and average saltation height on wind speed was weaker than that observed in a wind tunnel and above a fiat surface. The preliminary results obtained in this study require more evidence from field observations to fully describe aeolian transport above developing dunes.
基金the funding received from the Natural Science Foundation of China (41301003, 41371026, and 31470480)the Technology of the People's Republic of China (No. 2013CB956000)
文摘Maqu County is located in the northeast Qinghai-Tibetan Plateau, and it is the main watershed for the Yellow River. The ecosystem there is extremely vulnerable and sensitive to climate change and human activities, which have caused significant deterioration of the eco-environment in this region. In order to restore the ecological environment, a government project to restore the grazing areas to grassland was implemented in Maqu County in early 2004. This study evaluates the effects of that restoration project on land use and land cover change (LUCC), and explores the driving forces of LUCC in Maqu County. In the study we used Landsat images obtained in 1989, 2004, 2009, and 2014 to establish databases of land use and land cover. Then we derived LUCC information by overlaying these layers using GIS software. Finally, we analyzed the main forces responsible for LUCC. The results showed that forests, high-coverage grasslands, and marshes experienced the most significant decreases during 1989–2004, by 882.8 ha, 35,250.4 ha, and 2,753.4 ha, respectively. However, moderate- and low-coverage grasslands and sand lands showed the opposite trend, increasing by 12,529.7 ha, 25,491.0 ha, and 577.5 ha, respectively. LUCC in 2004–2009 showed that ecological degradation slowed compared with 1989?2004. During 2009–2014, high- and moderate-coverage grasslands increased obviously, but low-coverage grasslands, marshes, unused lands, sand lands, and water areas showed the opposite trend. These results suggested that the degradation of the eco-environment was obvious before 2009, showing a decrease in the forests, grasslands, and water areas, and an increase in unused lands. The ecological degradation was reversed after 2009, as was mainly evidenced by increases in high- and mod-erate-coverage grasslands, and the shrinkage rate of marshes decreased obviously. These results showed that the project of restoring grazing lands to grassland had a positive effect on the LUCC. Other major factors that influence the LUCC include increasing temperature, variation in the seasonal frozen soil environment, seasonal overgrazing, and pest and rodent damage.
基金supported by the National Key R&D Program of China(2020YFA0710403,2020YFA0710404)the National Natural Science Foundation of China(52222203,52073008,52250119)+1 种基金Beijing Municipal Science&Technology Commission(221100007422088)China Postdoctoral Science Foundation Funded Project(BX20220372,2023M730159)。
基金supported by the Natural Science Foundation of Jiangsu Province (Nos.BK20210593 and BK20231441)the National Natural Science Foundation of China (No.62204127)the Fundamental Research Funds for the Central Universities (No.NS2022096)。
文摘Using an identical monolithic InGaN/GaN light emitting diode (LED) array as the sensing module and a well-designed data processing module, we demonstrate a small-size concentration sensing prototype. Overlap between the emission and the response spectra of the InGaN/GaN LED makes each pair of LEDs in the arrayed chip form a sensing channel. The changes in liquid concentration can be transformed into variation of photocurrent. The system's sensing properties are further optimized by varying the position, number of receivers, and packaging reflectors. With methyl orange as a tracer agent, the sensing system's resolution is 0.286 μmol/L with a linear measurement region below 40 μmol/L.
基金supported by talent startup funding from Fudan University(Nos.JIF101017,SXF101012,and JIF101047)Science Innovation 2030-Brain Science and Brain-Inspired Intelligence Technology Major Project(No.2021ZD0201100 Task 4 and No.2021ZD0201104)from the Ministry of Science and Technology(MOST),China+3 种基金Jinsong Wu was supported by Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX01)ZJ Lab,and operating grant of Shanghai Brain Bank technical system(No.16JC1420103)Edwin Wang was supported by Alberta Innovates Translational Chair Program in Cancer Genomics,the Natural Sciences and Engineering Research Council of Canada(NSERC,No.RGPIN-2017-04885)Canadian Foundation of Innovation(No.36655).
文摘The association of neurogenesis and gliogenesis with glioma remains unclear.By conducting single-cell RNA-seq analyses on 26 gliomas,we reported their classification into primitive oligodendrocyte precursor cell(pri-OPC)-like and radial glia(RG)-like tumors and validated it in a public cohort and TCGA glioma.The RG-like tumors exhibited wild-type isocitrate dehydrogenase and tended to carry EGFR mutations,and the pri-OPC-like ones were prone to carrying TP53 mutations.Tumor subclones only in pri-OPC-like tumors showed substantially down-regulated MHC-I genes,suggesting their distinct immune evasion programs.Furthermore,the two subgroups appeared to extensively modulate glioma-infiltrating lymphocytes in distinct manners.Some specific genes not expressed in normal immune cells were found in glioma-infiltrating lymphocytes.For example,glial/glioma stem cell markers OLIG1/PTPRZ1 and B cell-specific receptors IGLC2/IGKC were expressed in pri-OPC-like and RG-like glioma-infiltrating lymphocytes,respectively.Their expression was positively correlated with those of immune checkpoint genes(e.g.,LGALS33)and poor survivals as validated by the increased expression of LGALS3 upon IGKC overexpression in Jurkat cells.This finding indicated a potential inhibitory role in tumor-infiltrating lymphocytes and could provide a new way of cancer immune evasion.
基金supported by the National Natural Science Foundation of China(Nos.22078322,21890762,22178344,and 21834006)the Youth Innovation Promotion Association CAS(No.Y2021022).
文摘Electrocatalytic depolymerization of lignin into value-added chemicals offers a promising technique to make biorefining sustainable.Herein,we report a robust trimetallic PdNiBi electrocatalyst for reductive C–O bond cleavage of different lignin model dimers and oxidized lignin under mild conditions.The reduction reaction proceeds with complete substrate conversion and excellent yields toward monomers of phenols(80%–99%)and acetophenones(75%–96%)in the presence of an ionic liquid electrolyte with operational stability.Systematic experimental investigations together with density functional theory(DFT)calculations reveal that the outstanding performance of the catalyst results from the synergistic effect of the metal elements,which facilitates the easier formation of a key Cαradical intermediate and the facile desorption of the as-formed products at the electrode.The results open up new opportunities for lignin valorization through the green electrocatalytic approach.
文摘Collective oscillations of free electrons generate plasmons on the surface of a material. A whispering-gallery microcavity effectively confines the light field on its surface based on the total reflection from its internal wall. When these two kinds of electromagnetic waves meet each other, the stimulated emissions from an individual ZnO microrod were enhanced more than 50-fold and the threshold was reduced after the whispering-gallery microcavity was coated with a monolayer of graphene and A1 nanoparticles. The improvement of the lasing performance was attributed to the synergistic energy coupling of the graphene/A1 surface plasmons with ZnO excitons. The lasing characteristics and the coupling mechanism were investigated systematically.
基金support of the National Natural Science Foundation of China(Nos.52125205,U20A20166,52192614,and 52103304)the National Key R&D Program of China(Nos.2021YFB3200302 and 2021YFB3200304)+3 种基金Natural Science Foundation of Beijing Municipality(Nos.Z180011 and 2222088)Shenzhen Science and Technology Program(No.KQTD20170810105439418)the open research fund of State Key Laboratory of Bioelectronics,Southeast University(No.SKLB2022-P01)the Fundamental Research Funds for the Central Universities.
文摘In spite of the explosive rise of research on memristive switching,more improvements in tunability,versatility,and hetero-integration are required through the discovery and application of novel materials.Herein,we report resistance switching in nano-thick two-dimensional(2D)crystals of bismuth selenium(BiSe).The BiSe devices exhibit nonvolatile bipolar resistance switching,volatile switching,and electrical bistable behavior in different conditions.The different memristive behavior of BiSe devices may be related to the concentration of Bi ions in this Bi-rich structure,which directly affects the capability of filaments forming.Furthermore,the external mechanical strain is applied in modulation of multi-layer BiSe devices.The memristive BiSe devices show a large on/off ratio of~10^(4)and retention time of~104 s.The discovery of memristive switching behavior in multi-layer BiSe is attributed to the forming of Bi filaments.The resistance switching behavior in multi-layer BiSe demonstrates the potential application in the flexible memories and functional integrated devices.
基金supported by the National Natural Science Foundation of China(11674023,51331002,51622205,61675027,61505010,51502018,51525202 and 51432005)111 Project(B170003)+2 种基金the National Key Research and Development Program of China(2016YFA0202703)Beijing Natural Science Foundation(4181004 and 4182080)the ‘‘Thousand Talents” Program of China for Pioneering Researchers and Innovative Teams(U1404619)
文摘As a direct bandgap semiconductor, organic-inorganic lead halide perovskite (MAPbX3, MA = CH3NH3, X =Cl, Br, I) have been considered as promising materials for laser due to their excellent optoelectronic properties. The perovskite materials with ID and 2D shapes were widely prepared and studied for Fabry-Perot mode and whispering-gallery-mode (WGM) microcavities, but cuboid-shape is rarely reported. In this work, we successfully fabricated single crystal cuboid-shaped MAPbBr3 perovskite w让h different morphologies, named microcuboid-MAPbBr3 (M-MAPbBr3) and multi-step-MAPbBr3 (MSMAPbBr3), via solvothermal method. Furthermore, the as-prepared *crystals excitonic recombination lifetime under different pumping energy density was studied by time-resolved photoiuminescence (TRPL). Based on controllable morphology and remarkable lasing properties, these cuboid shaped single crystal perovskite could be a promising candidate for small laser, and other optoelectronic devices.
基金Acknowledgements The authors sincerely appreciate the help of Shufeng Wang and Yu Li at Peking University and Andong Xia at Institute of Chemistry Chinese Academy of Sciences for their technical support on time-resolved PL. This work was supported by the National Basic Research Program (No. 2013CB932903), National Natural Science Foundation (Nos. 61275054, 61475035, and 11404289), Jiangsu Province Science and Technology Support Program (No. BE2016177) and Natural Science Foundation of Zhejiang Province (No. LY17A040011).
文摘It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities. This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision. Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles. The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher side- mode suppression ratio and lower threshold. The mechanism that led to this enhancement has been described in detail.
文摘Collaborative enhancements from surface plasmons (SPs) and whispering-gallery modes (WGMs) can induce intense near-field effects with high spatial localization around the surface of a semiconducting material. One can construct a highly efficient hybrid microcavity using semiconducting materials through resonant coupling between SPs and WGMs. Hexagonal ZnO micro-/nanostructures, which have been employed as natural WGM microcavities for ultraviolet (UV) lasing, can be used as ideal platforms to construct such hybrid microcavities. Here, we comprehensively review the recent efforts for improving lasing performance by resonant coupling between SPs and WGMs. Traditional SPs originating from various metals as well as novel SPs originating from atomic layers such as graphene are considered. Moreover, we discuss the mechanism of light-matter interactions beyond the improvements in lasing performance.
基金This work was supported by Shanghai Shenkang Hospital Development Center(No.SHDC12018114)Shanghai Rising-Star Program(No.19QA1401700)+3 种基金Shanghai Young Talents Program(No.2017YQ014)Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX01)ZJLabNational Natural Science Foundation of China(No.81701289).
文摘The protection of language function is one of the major challenges of brain surgery.Over the past century,neurosurgeons have attempted to seek the optimal strategy for the preoperative and intraoperative identification of language-related brain regions.Neurosurgeons have investigated the neural mechanism of language,developed neurolinguistics theory,and provided unique evidence to further understand the neural basis of language functions by using intraoperative cortical and subcortical electrical stimulation.With the emergence of modern neuroscience techniques and dramatic advances in language models over the last 25 years,novel language mapping methods have been applied in the neurosurgical practice to help neurosurgeons protect the brain and reduce morbidity.The rapid advancements in brain-computer interface have provided the perfect platform for the combination of neurosurgery and neurolinguistics.In this review,the history of neurolinguistics models,advancements in modern technology,role of neurosurgery in language mapping,and modern language mapping methods(including noninvasive neuroimaging techniques and invasive cortical electroencephalogram)are presented.
基金This work was supported by the National Natural Science Foundation of China(grant number 81671264)Guangzhou Scientific Foundation Committee(grant numbers 201704020222 and 201807010094)
文摘Background:Traumatic brain injury,one of the leading causes of death in adults under 40 years of age in the world,is frequently caused by mechanical shock,resulting in diffuse neuronal damage and long-term cognitive dysfunction.Many existing TBI animal models revival with expensive equipment or special room are needed or the processes of operations are complex and not easy to be widely used.Therefore,a simpler TBI model needs to be designed.Methods:Our TBI model is an innovation of the modeling method through air guns shutting rubber bullets.A core facet is the application of our designed rubber bullet impact device.It could focus the hitting power to the fixed site of the brain,thus triggering a mild closed head injury.Moreover,the degree of damage can be adjusted by the times of shots.Results:Our model induced blood-brain barrier leakage and diffused neuronal damage.Besides,it led to an increased level of Tau phosphorylation and resulted in cognitive dysfunction within several weeks post-injury.Conclusion:Our TBI model is not only simple and time-saving but also can simulate mild brain injuries in clinical.It is suitable for exploring pathobiological mechanisms as well as a screening of potential therapies for TBI.