Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power pla...Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power plant in this study.A laser-induced breakdown spectroscopy(LIBS)system for Hg measurement in mixed gas was built to study the effect of mixed gas pressure,Hg concentration in mixed gas and delay time on Hg measurement.The experimental results show that the appropriate low mixed gas pressure can obtain high Hg signal intensity and signal to noise ratio.The Hg signal intensity and signal to noise ratio increased with the increase of Hg concentration in mixed gas.The Hg signal intensity and signal to noise ratio decreased with the increase in delay time.According to the above results,the optimized measurement conditions can be determined.Different Hg concentrations in mixed gas were quantitatively analyzed by the internal standard method and traditional calibration method respectively.The relative error of prediction of the test sample obtained by the internal standard method was within 11.11%.The relative error of prediction of the traditional calibration method was less than 14.54%.This proved that the internal standard method can improve the accuracy of quantitative analysis of Hg concentration in flue gas using LIBS.展开更多
Contents of fly ash are important factors for the operation of coal-fired plants. Real-time monitoring of coal and fly ash such as unburned carbon in fly ash can be an indicator of the combustion conditions. Because o...Contents of fly ash are important factors for the operation of coal-fired plants. Real-time monitoring of coal and fly ash such as unburned carbon in fly ash can be an indicator of the combustion conditions. Because of the strong signal intensity and the relative simplicity of the LIBS (Laser- Induced Breakdown Spectroscopy) technique, LIBS can be applicable for real-time composition measurement of coal and fly ash. This research presented here focused on the clarification of the effects of plasma temperature and coexisting materials on quantitative measurement of fly ash contents. Quantitative capability of LIBS was improved using the proposed plasma temperature correction method. The CO2 effect was also discussed to accurately evaluate unburned carbon in fly ash in exhausts. Using the results shown in this study, quantitative measurement of fly ash contents has been improved for wider applications of LIBS to practical fields.展开更多
Insect pest damage to crops is a threat to global food security(Tilman et al.,2011).Climate change,the evolution of insecticide resistance,and the phasing out of insecticides due to environmental and safety concerns e...Insect pest damage to crops is a threat to global food security(Tilman et al.,2011).Climate change,the evolution of insecticide resistance,and the phasing out of insecticides due to environmental and safety concerns exacerbate this problem.Farmers urgently need safe and effective crop protection tools to sustainably generate yields that meet ever-increasing global demand.展开更多
The plant UV-B photoreceptor UV RESISTANCE LOCUS 8(UVR8)exists as a homodimer in its inactive ground state.Upon UV-B exposure,UVR8monomerizes and interacts with a downstreamkey regulator,theCONSTITUTIVE PHOTOMORPHOGEN...The plant UV-B photoreceptor UV RESISTANCE LOCUS 8(UVR8)exists as a homodimer in its inactive ground state.Upon UV-B exposure,UVR8monomerizes and interacts with a downstreamkey regulator,theCONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYA(COP1/SPA)E3 ubiquitin ligase complex,to initiate UV-B signaling.Two WD40 proteins,REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1(RUP1)and RUP2 directly interact with monomeric UVR8 and facilitate UVR8 ground state reversion,completing the UVR8 photocycle.Here,we reconstituted the RUP-mediated UVR8 redimerization process in vitro and reported the structure of the RUP2-UVR8^(W285A) complex(2.0A).RUP2 and UVR8^(W285A) formed a heterodimer via two distinct interfaces,designated Interface 1 and 2.The previously characterized Interface 1 is found between the RUP2 WD40 domain and the UVR8 C27 subregion.The newly identified Interface 2 is formed through interactions between the RUP2 WD40 domain and the UVR8 core domain.Disruption of Interface 2 impairedUV-B induced photomorphogenic development in Arabidopsis thaliana.Further biochemical analysis indicated that both interfaces are important for RUP2-UVR8 interactions and RUP2-mediated facilitation of UVR8 redimerization.Our findings suggest that the two-interface-interaction mode is adopted by both RUP2 and COP1 when they interact with UVR8,marking a step forward in understanding the molecular basis that underpins the interactions between UVR8 and its photocycle regulators.展开更多
A low mass flux steam jet in subcooled water was experimentally investigated.The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature.The axial total...A low mass flux steam jet in subcooled water was experimentally investigated.The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature.The axial total pressures,the axial and radial temperature distributions were measured in the jet region.The results indicated that the pressure and temperature distributions were mainly influenced by the water temperature.The correlations corrected with water temperature were given to predict the dimen-sionless axial pressure peak distance and axial temperature distributions in the jet region,the results showed a good agreement between the predictions and experiments.Moreover,the self-similarity property of the radial temperature was obtained,which agreed well with Gauss distribution.In present work,all the dimensionless properties were mainly dependent on the water temperature but weakly on the nozzle size under a certain steam mass flux.展开更多
The capping agents for liquid metal (LM) nanodroplets in aqueous solutions are restricted to thiol-containing and positively-charged molecules or macromolecules.However,both thiolate-metal complex and electrostatic in...The capping agents for liquid metal (LM) nanodroplets in aqueous solutions are restricted to thiol-containing and positively-charged molecules or macromolecules.However,both thiolate-metal complex and electrostatic interaction are liable to detachment upon strong mechanical forces such as sonication,leading to limited stability and applications.To address this,we utilized ultrasmall water soluble melanin nanoparticles (MNPs) as the capping agent,which exhibited strong metal binding capability with the oxide layer of gallium based LMs and resulted in enhanced stability.Interestingly,shape-controlled synthesis of LM nanodroplets can be achieved by the incorporation of MNPs.Various EGaln nanostructures including nanorice,nanosphere and nanorod were obtained by simply tuning the feed ratio,sonication time,and suspension temperature.Among these shapes,EGaln nanorice has the best photothermal conversion efficiency,which could be leveraged for photothermal therapy.展开更多
The cybersecurity report provides unstructured actionable cyber threat intelligence(CTI)with detailed threat attack procedures and indicators of compromise(IOCs),e.g.,malware hash or URL(uniform resource locator)of co...The cybersecurity report provides unstructured actionable cyber threat intelligence(CTI)with detailed threat attack procedures and indicators of compromise(IOCs),e.g.,malware hash or URL(uniform resource locator)of command and control server.The actionable CTI,integrated into intrusion detection systems,can not only prioritize the most urgent threats based on the campaign stages of attack vectors(i.e.,IOCs)but also take appropriate mitigation measures based on contextual information of the alerts.However,the dramatic growth in the number of cybersecurity reports makes it nearly impossible for security professionals to find an efficient way to use these massive amounts of threat intelligence.In this paper,we propose a trigger-enhanced actionable CTI discovery system(TriCTI)to portray a relationship between IOCs and campaign stages and generate actionable CTI from cybersecurity reports through natural language processing(NLP)technology.Specifically,we introduce the“campaign trigger”for an effective explanation of the campaign stages to improve the performance of the classification model.The campaign trigger phrases are the keywords in the sentence that imply the campaign stage.The trained final trigger vectors have similar space representations with the keywords in the unseen sentence and will help correct classification by increasing the weight of the keywords.We also meticulously devise a data augmentation specifically for cybersecurity training sets to cope with the challenge of the scarcity of annotation data sets.Compared with state-of-the-art text classification models,such as BERT,the trigger-enhanced classification model has better performance with accuracy(86.99%)and F1 score(87.02%).We run TriCTI on more than 29k cybersecurity reports,from which we automatically and efficiently collect 113,543 actionable CTI.In particular,we verify the actionability of discovered CTI by using large-scale field data from VirusTotal(VT).The results demonstrate that the threat intelligence provided by VT lacks a part of the threat context for IOCs,such as the Actions on Objectives campaign stage.As a comparison,our proposed method can completely identify the actionable CTI in all campaign stages.Accordingly,cyber threats can be identified and resisted at any campaign stage with the discovered actionable CTI.展开更多
RNA editing is a type of post-transcriptional modification that includes nucleotide insertion/deletion or conversion. Different categories of RNA editing have been widely observed in distinct RNAs from divergent organ...RNA editing is a type of post-transcriptional modification that includes nucleotide insertion/deletion or conversion. Different categories of RNA editing have been widely observed in distinct RNAs from divergent organisms. In flowering plants, RNA editing usually alters cytidine to uridine in plastids and mitochondria, playing important roles in various plant developmental processes, including organelle biogenesis, adaptation to environmental changes, and signal transduction. Numerous studies have demonstrated that a number of factors are involved in plant RNA editing, such as pentatricopeptide repeat(PPR) proteins, multiple organelle RNA editing factors(MORF, also known as RIP), organelle RNA recognition motif(ORRM) containing proteins,protoporphyrinogen IX oxidase 1(PPO1) and organelle zinc finger 1(OZ1). These factors play diverse roles in plant RNA editing due to their distinct characteristics. In this review, we discuss the functional roles of the individual editing factors and their associations in plant RNA editing.展开更多
Cold-end systems are heat sinks of thermal power cycles,which have an essential effect on the overall performance of thermal power plants.To enhance the efficiency of thermal power plants,multi-pressure condensers hav...Cold-end systems are heat sinks of thermal power cycles,which have an essential effect on the overall performance of thermal power plants.To enhance the efficiency of thermal power plants,multi-pressure condensers have been applied in some large-capacity thermal power plants.However,little attention has been paid to the optimization of the cold-end system with multi-pressure condensers which have multiple parameters to be identified.Therefore,the design optimization methods of coldend systems with single-and multi-pressure condensers are developed based on the entropy generation rate,and the genetic algorithm(GA)is used to optimize multiple parameters.Multiple parameters,including heat transfer area of multi-pressure condensers,steam distribution in condensers,and cooling water mass flow rate,are optimized while considering detailed entropy generation rate of the cold-end systems.The results show that the entropy generation rate of the multi-pressure cold-end system is less than that of the single-pressure cold-end system when the total condenser area is constant.Moreover,the economic performance can be improved with the adoption of the multi-pressure cold-end system.When compared with the single-pressure cold-end system,the excess revenues gained by using dual-and quadruplepressure cold-end systems are 575 and 580 k$/a,respectively.展开更多
基金supported by National Natural Science Foundation of China (No. 51506171)。
文摘Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power plant in this study.A laser-induced breakdown spectroscopy(LIBS)system for Hg measurement in mixed gas was built to study the effect of mixed gas pressure,Hg concentration in mixed gas and delay time on Hg measurement.The experimental results show that the appropriate low mixed gas pressure can obtain high Hg signal intensity and signal to noise ratio.The Hg signal intensity and signal to noise ratio increased with the increase of Hg concentration in mixed gas.The Hg signal intensity and signal to noise ratio decreased with the increase in delay time.According to the above results,the optimized measurement conditions can be determined.Different Hg concentrations in mixed gas were quantitatively analyzed by the internal standard method and traditional calibration method respectively.The relative error of prediction of the test sample obtained by the internal standard method was within 11.11%.The relative error of prediction of the traditional calibration method was less than 14.54%.This proved that the internal standard method can improve the accuracy of quantitative analysis of Hg concentration in flue gas using LIBS.
文摘Contents of fly ash are important factors for the operation of coal-fired plants. Real-time monitoring of coal and fly ash such as unburned carbon in fly ash can be an indicator of the combustion conditions. Because of the strong signal intensity and the relative simplicity of the LIBS (Laser- Induced Breakdown Spectroscopy) technique, LIBS can be applicable for real-time composition measurement of coal and fly ash. This research presented here focused on the clarification of the effects of plasma temperature and coexisting materials on quantitative measurement of fly ash contents. Quantitative capability of LIBS was improved using the proposed plasma temperature correction method. The CO2 effect was also discussed to accurately evaluate unburned carbon in fly ash in exhausts. Using the results shown in this study, quantitative measurement of fly ash contents has been improved for wider applications of LIBS to practical fields.
基金supported by the Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-2060302).
文摘Insect pest damage to crops is a threat to global food security(Tilman et al.,2011).Climate change,the evolution of insecticide resistance,and the phasing out of insecticides due to environmental and safety concerns exacerbate this problem.Farmers urgently need safe and effective crop protection tools to sustainably generate yields that meet ever-increasing global demand.
基金supported by funds from the National Key R&D Program of China(2018YFA0507700 and 2017YFA0506100)the National Natural Science Foundation of China(31722017,31870753,and 32122011)+1 种基金the Foundation of Hubei Hongshan Laboratory(2021hszd010)the China Postdoctoral Science Foundation(2020M682437 for Ling Ma).
文摘The plant UV-B photoreceptor UV RESISTANCE LOCUS 8(UVR8)exists as a homodimer in its inactive ground state.Upon UV-B exposure,UVR8monomerizes and interacts with a downstreamkey regulator,theCONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYA(COP1/SPA)E3 ubiquitin ligase complex,to initiate UV-B signaling.Two WD40 proteins,REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1(RUP1)and RUP2 directly interact with monomeric UVR8 and facilitate UVR8 ground state reversion,completing the UVR8 photocycle.Here,we reconstituted the RUP-mediated UVR8 redimerization process in vitro and reported the structure of the RUP2-UVR8^(W285A) complex(2.0A).RUP2 and UVR8^(W285A) formed a heterodimer via two distinct interfaces,designated Interface 1 and 2.The previously characterized Interface 1 is found between the RUP2 WD40 domain and the UVR8 C27 subregion.The newly identified Interface 2 is formed through interactions between the RUP2 WD40 domain and the UVR8 core domain.Disruption of Interface 2 impairedUV-B induced photomorphogenic development in Arabidopsis thaliana.Further biochemical analysis indicated that both interfaces are important for RUP2-UVR8 interactions and RUP2-mediated facilitation of UVR8 redimerization.Our findings suggest that the two-interface-interaction mode is adopted by both RUP2 and COP1 when they interact with UVR8,marking a step forward in understanding the molecular basis that underpins the interactions between UVR8 and its photocycle regulators.
基金Supported by the National Natural Science Foundation of China(Grant Nos.50676078,50821064)the National High-Tech Research and Development Program of China("863" Project)(Grant No.2006AA05Z230)
文摘A low mass flux steam jet in subcooled water was experimentally investigated.The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature.The axial total pressures,the axial and radial temperature distributions were measured in the jet region.The results indicated that the pressure and temperature distributions were mainly influenced by the water temperature.The correlations corrected with water temperature were given to predict the dimen-sionless axial pressure peak distance and axial temperature distributions in the jet region,the results showed a good agreement between the predictions and experiments.Moreover,the self-similarity property of the radial temperature was obtained,which agreed well with Gauss distribution.In present work,all the dimensionless properties were mainly dependent on the water temperature but weakly on the nozzle size under a certain steam mass flux.
基金the Alfred P. Sloan Foundation (Sloan Research Fellowship)the National Natural Science Foundation of China (Nos.21504034,31671035,and 51473071)+3 种基金the National Key Research and Development Program of China (No. 2017ZX09304021 )the Jiangsu Provincial Medical Innovation Team (No.CXTDA2017024)Natural Science Foundation of Jiangsu Province (Nos.BK2016U37,BK20170204,and BE2016632). This work was performed in part at the Analytical Instrumentation Facility (AIF) at North Carolina State Universitywhich is supported by the State of North Carolina and the National Science Foundation (award number ECCS-1542015).
文摘The capping agents for liquid metal (LM) nanodroplets in aqueous solutions are restricted to thiol-containing and positively-charged molecules or macromolecules.However,both thiolate-metal complex and electrostatic interaction are liable to detachment upon strong mechanical forces such as sonication,leading to limited stability and applications.To address this,we utilized ultrasmall water soluble melanin nanoparticles (MNPs) as the capping agent,which exhibited strong metal binding capability with the oxide layer of gallium based LMs and resulted in enhanced stability.Interestingly,shape-controlled synthesis of LM nanodroplets can be achieved by the incorporation of MNPs.Various EGaln nanostructures including nanorice,nanosphere and nanorod were obtained by simply tuning the feed ratio,sonication time,and suspension temperature.Among these shapes,EGaln nanorice has the best photothermal conversion efficiency,which could be leveraged for photothermal therapy.
基金Our research was supported by the National Key Research and Development Program of China(Nos.2019QY1301,2018YFB0805005,2018YFC0824801).
文摘The cybersecurity report provides unstructured actionable cyber threat intelligence(CTI)with detailed threat attack procedures and indicators of compromise(IOCs),e.g.,malware hash or URL(uniform resource locator)of command and control server.The actionable CTI,integrated into intrusion detection systems,can not only prioritize the most urgent threats based on the campaign stages of attack vectors(i.e.,IOCs)but also take appropriate mitigation measures based on contextual information of the alerts.However,the dramatic growth in the number of cybersecurity reports makes it nearly impossible for security professionals to find an efficient way to use these massive amounts of threat intelligence.In this paper,we propose a trigger-enhanced actionable CTI discovery system(TriCTI)to portray a relationship between IOCs and campaign stages and generate actionable CTI from cybersecurity reports through natural language processing(NLP)technology.Specifically,we introduce the“campaign trigger”for an effective explanation of the campaign stages to improve the performance of the classification model.The campaign trigger phrases are the keywords in the sentence that imply the campaign stage.The trained final trigger vectors have similar space representations with the keywords in the unseen sentence and will help correct classification by increasing the weight of the keywords.We also meticulously devise a data augmentation specifically for cybersecurity training sets to cope with the challenge of the scarcity of annotation data sets.Compared with state-of-the-art text classification models,such as BERT,the trigger-enhanced classification model has better performance with accuracy(86.99%)and F1 score(87.02%).We run TriCTI on more than 29k cybersecurity reports,from which we automatically and efficiently collect 113,543 actionable CTI.In particular,we verify the actionability of discovered CTI by using large-scale field data from VirusTotal(VT).The results demonstrate that the threat intelligence provided by VT lacks a part of the threat context for IOCs,such as the Actions on Objectives campaign stage.As a comparison,our proposed method can completely identify the actionable CTI in all campaign stages.Accordingly,cyber threats can be identified and resisted at any campaign stage with the discovered actionable CTI.
基金supported by the Ministry of Science and Technology (2015CB910900)the Fok Ying-Tong Education Foundation (151021)+2 种基金the Fundamental Research Funds for the Central Universities (2017PY031 to Ping Yin)China Postdoctoral Science Foundation (2015M572163, 2017T100561)National Natural Science Foundation of China (31700203 to Junjie Yan)
文摘RNA editing is a type of post-transcriptional modification that includes nucleotide insertion/deletion or conversion. Different categories of RNA editing have been widely observed in distinct RNAs from divergent organisms. In flowering plants, RNA editing usually alters cytidine to uridine in plastids and mitochondria, playing important roles in various plant developmental processes, including organelle biogenesis, adaptation to environmental changes, and signal transduction. Numerous studies have demonstrated that a number of factors are involved in plant RNA editing, such as pentatricopeptide repeat(PPR) proteins, multiple organelle RNA editing factors(MORF, also known as RIP), organelle RNA recognition motif(ORRM) containing proteins,protoporphyrinogen IX oxidase 1(PPO1) and organelle zinc finger 1(OZ1). These factors play diverse roles in plant RNA editing due to their distinct characteristics. In this review, we discuss the functional roles of the individual editing factors and their associations in plant RNA editing.
基金supported the National Key R&D Program of China(No.2018YFB0604405).
文摘Cold-end systems are heat sinks of thermal power cycles,which have an essential effect on the overall performance of thermal power plants.To enhance the efficiency of thermal power plants,multi-pressure condensers have been applied in some large-capacity thermal power plants.However,little attention has been paid to the optimization of the cold-end system with multi-pressure condensers which have multiple parameters to be identified.Therefore,the design optimization methods of coldend systems with single-and multi-pressure condensers are developed based on the entropy generation rate,and the genetic algorithm(GA)is used to optimize multiple parameters.Multiple parameters,including heat transfer area of multi-pressure condensers,steam distribution in condensers,and cooling water mass flow rate,are optimized while considering detailed entropy generation rate of the cold-end systems.The results show that the entropy generation rate of the multi-pressure cold-end system is less than that of the single-pressure cold-end system when the total condenser area is constant.Moreover,the economic performance can be improved with the adoption of the multi-pressure cold-end system.When compared with the single-pressure cold-end system,the excess revenues gained by using dual-and quadruplepressure cold-end systems are 575 and 580 k$/a,respectively.