期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
High resolution tomography of the Tanlu fault zone near Hefei with passive seismic and magnetotelluric linear array data 被引量:1
1
作者 Jian Xu Kangdong Wang +5 位作者 junlun li Ning Gu Ning Ding Jiawei Qian Wen Yang Haijiang Zhang 《Earthquake Science》 2021年第1期24-35,共12页
As the largest fault trending NNE-SSW to NE-SW in the eastern Eurasia Continent,the Tanlu fault zone(TLFZ)extends over 2,400 km within China,roughly from Wuxue,Hubei Province,to Russia.Since the Quaternary period,the ... As the largest fault trending NNE-SSW to NE-SW in the eastern Eurasia Continent,the Tanlu fault zone(TLFZ)extends over 2,400 km within China,roughly from Wuxue,Hubei Province,to Russia.Since the Quaternary period,the TLFZ has been an earthquake-prone area in eastern China where several major earthquakes resulted by tectonic compression occurred,causing tremendous casualties and significant economic losses.Many studies on different segments of the TLFZ have been carried out in the past few decades.However,numerous key questions regarding the fault zone remain unanswered due to a lack of clear subsurface characterization and fault delineation.In this study,we present high-resolution tomographic results across the TLFZ to the east of Hefei,where one 22-km-long passive seismic array with densely spaced short-period nodes,and a 24-km-long magnetotelluric array were deployed adjacent to each other.We find the velocity and resistivity variations are highly consistent with known surface geology.Sharp property contrasts in both the seismic shear wave velocity and electrical resistivity profiles clearly delineate the Tanlu F1 fault(TLF-1)near Hefei.More interestingly,an upwelling with distinct high velocity is imaged within the Hefei Basin to the west of the TLF-1,whereas a slanted block with lowvelocity and low-resistivity seems to cut into or thrust upon the high-grade to low-grade middle-pressure rocks in the Zhangbaling uplift right below the Tanlu F2 ductile shear fault(TLF-2).The presented results show a new approach to characterize deep subsurface structure of the TLFZ beyond 2-km depths using passive data,which it is often difficult for active seismic surveys with refracted and reflected waves to image. 展开更多
关键词 Tanlu fault zone deep structures ambient noise tomography MAGNETOTELLURICS ductile shear zone
下载PDF
A real-time AI-assisted seismic monitoring system based on new nodal stations with 4G telemetry and its application in the Yangbi M_(S) 6.4 aftershock monitoring in southwest China 被引量:1
2
作者 junlun li Huajian Yao +10 位作者 Baoshan Wang Yang Yang Xin Hu lishu Zhang Beng Ye Jun Yang Xiaobin li Feng liu Guoyi Chen Chang Guo Wen Yang 《Earthquake Research Advances》 CSCD 2022年第2期3-10,共8页
A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.Howeve... A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities. 展开更多
关键词 Seismic dense array 4G data transmission Real-time earthquake monitoring Machine-learning assisted processing Real-time intelligent array seismology
下载PDF
Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning-Zhaotong Shale Gas Field,Southern Sichuan Basin 被引量:5
3
作者 Wen Yang GuoYi Chen +3 位作者 lingYuan Meng Yang Zang HaiJiang Zhang junlun li 《Earth and Planetary Physics》 CSCD 2021年第6期532-546,共15页
With the development of unconventional shale gas in the southern Sichuan Basin,seismicity in the region has increased significantly in recent years.Though the existing sparse regional seismic stations can capture most... With the development of unconventional shale gas in the southern Sichuan Basin,seismicity in the region has increased significantly in recent years.Though the existing sparse regional seismic stations can capture most earthquakes with ML≥2.5,a great number of smaller earthquakes are often omitted due to limited detection capacity.With the advent of portable seismic nodes,many dense arrays for monitoring seismicity in the unconventional oil and gas fields have been deployed,and the magnitudes of those earthquakes are key to understand the local fault reactivation and seismic potentials.However,the current national standard for determining the local magnitudes was not specifically designed for monitoring stations in close proximity,utilizing a calibration function with a minimal resolution of 5 km in the epicentral distance.That is,the current national standard tends to overestimate the local magnitudes for stations within short epicentral distances,and can result in discrepancies for dense arrays.In this study,we propose a new local magnitude formula which corrects the overestimated magnitudes for shorter distances,yielding accurate event magnitudes for small earthquakes in the Changning-Zhaotong shale gas field in the southern Sichuan Basin,monitored by dense seismic arrays in close proximity.The formula is used to determine the local magnitudes of 7,500 events monitored by a two-phased dense array with several hundred 5 Hz 3 C nodes deployed from the end of February 2019 to early May 2019 in the Changning-Zhaotong shale gas field.The magnitude of completeness(MC)using the dense array is-0.1,compared to MC 1.1 by the sparser Chinese Seismic Network(CSN).In addition,using a machine learning detection and picking procedure,we successfully identify and process some 14,000 earthquakes from the continuous waveforms,a ten-fold increase over the catalog recorded by CSN for the same period,and the MC is further reduced to-0.3 from-0.1 compared to the catalog obtained via manual processing using the same dense array.The proposed local magnitude formula can be adopted for calculating accurate local magnitudes of future earthquakes using dense arrays in the shale gas fields of the Sichuan Basin.This will help to better characterize the local seismic risks and potentials. 展开更多
关键词 shale gas development local magnitude MICROEARTHQUAKES dense seismic array machine learning
下载PDF
P-wave velocity structure in the crust and the uppermost mantle of Chao Lake region of the Tan-Lu Fault inferred from teleseismic arrival time tomography 被引量:1
4
作者 Bem Shadrach Terhemba Huajian Yao +3 位作者 Song Luo Lei Gao Haijiang Zhang junlun li 《Earthquake Science》 2022年第6期427-447,共21页
Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth part... Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth partly due to the overprinting of the fault zone by intrusive materials and its relatively low seismic activity and sparse seismic station coverage.This study took advantage of a dense seismic array deployed around Chao Lake to delineate the P-wave velocity variations in the crust and uppermost mantle using teleseismic earthquake arrival time tomography.The station-pair double-difference with waveform crosscorrelation technique was employed.We used a multiscale resolution 3-D initial model derived from the combination of highresolution 3-D v S models within the region of interest to account for the lateral heterogeneity in the upper crust.The results revealed that the velocity of the upper crust is segmented with structures trending in the direction of the strike of the fault.Sedimentary basins are delineated on both sides of the fault with slow velocities,while the fault zone is characterized by high velocity in the crust and uppermost mantle.The high-velocity structure in the fault zone shows characteristics of magma intrusion that may be connected to the Mesozoic magmatism in and around the Middle and Lower Yangtze River Metallogenic Belt(MLYMB),implying that the Tan-Lu fault might have formed a channel for magma intrusion.Magmatic material in Chao Lake is likely connected to the partial melting,assimilation,storage,and homogenization of the uppermost mantle and the lower crustal rocks.The intrusions,however,seem to have suffered severe regional extension along the Tan-Lu fault driven by the eastward Paleo-Pacific plate subduction,thereby losing its deep trail due to extensional erosion. 展开更多
关键词 teleseismic arrival time tomography v P velocity structure crust and uppermost mantle Tan-Lu Fault Chao Lake
下载PDF
Full moment tensor inversion constrained by doublecouple focal mechanism for induced seismicity
5
作者 Yuyang Tan Haijiang Zhang +2 位作者 junlun li Chen Yin Furong Wu 《Earthquake Science》 2020年第4期177-193,共17页
In this study,we propose a new method to determine full moment tensor solution for induced seismicity.This method generalizes the full waveform matching algorithm we have developed to determine the double-couple(DC)fo... In this study,we propose a new method to determine full moment tensor solution for induced seismicity.This method generalizes the full waveform matching algorithm we have developed to determine the double-couple(DC)focal mechanism based on the neighbourhood algorithm.One major difference between the new method and the former one is that we adopt a new misfit function to constrain the candidate moment tensor solutions with respect to a reference DC solution in addition to other misfit terms characterizing the waveform matching.Through synthetic tests using a real passive seismic survey geometry,the results show the new constraint can help better recover the DC components of inverted moment tensors.We further investigate how errors in the velocity model and source location affect the moment tensor solution.The synthetic test results indicate that the constrained inversion is robust in recovering both the DC and non-DC components.We also test the proposed method on several real induced events in an oil/gas field in Oman using the same observation system as synthetic tests.While it is found that the full moment tensor solutions without using the DC constraints have much larger non-DC components than solutions with the DC constraints,both solutions are able to fit the observed waveforms at similar levels.The synthetic and real test results suggest the proposed DC constrained inversion method can reliably retrieve full moment tensor solutions for the induced seismicity. 展开更多
关键词 induced seismicity moment tensor double-couple waveform inversion neighbourhood algorithm
下载PDF
High-resolution velocity structure and seismogenic potential of strong earthquakes in the Bamei-Kangding segment of the Xianshuihe fault zone
6
作者 Yan ZHAO junlun li +5 位作者 Jian XU Huajian YAO Gaohua ZHU Hongfeng YANG Jinyu ZHANG Renqi LU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第9期1960-1978,共19页
On September 5,2022,a strong MS6.8 earthquake struck the Luding area in the Kangding-Moxi segment of the Xianshuihe fault zone,which is the northern boundary of the Sichuan-Yunnan rhombic block,causing considerable ca... On September 5,2022,a strong MS6.8 earthquake struck the Luding area in the Kangding-Moxi segment of the Xianshuihe fault zone,which is the northern boundary of the Sichuan-Yunnan rhombic block,causing considerable casualties.The Bamei-Kangding segment of the Xianshuihe fault zone,which is located only tens of kilometers away from the Luding earthquake,has hosted frequent moderate to strong earthquakes in history and is a dangerous earthquake-prone zone.Therefore,it is critical to investigate the regional seismogenic environment for strong earthquakes and to evaluate the impact of the Luding earthquake in this area.For this purpose,we deployed a dense seismic array comprising over 200 short-period nodes in this region from July to August,2022 and acquired seismic ambient noise for over 30 days.Using the collected data,we conducted surface wave tomography and obtained a high-resolution 3-D shear wave velocity model for the regional shallow crust down to 8 km in depth.The key findings include:(1)the Bamei-Kangding segment of the Xianshuihe fault zone exhibits widespread stripped lowvelocity anomalies,suggesting shear movements at a relatively high temperature of the Xianshuihe fault zone;the Zheduoshan granitic pluton situated between the Zheduotang and southern Selaha faults shows a distinct low-velocity anomaly,which may be attributed to the localized high-temperature anomaly resulted by a deep magmatic heat source and the recent rapid uplift of the Zheduoshan area;(2)a ten-kilometer-wide high velocity body found below 4 km in depth near the Zhonggu area in the Bamei segment coincides with the seismic gap of moderate to strong earthquakes in this region,suggesting that the high velocity body may act as a seismic barrier;(3)the heterogeneity of the velocity structure along the Bamei-Kangding segment of the Xianshuihe fault zone corresponds to the regional changes in temperature,which reveals the reason for the spatially varying seismogenic potential in this segment;especially,the Selaha and Zheduotang faults which are located along the boundaries between the high and low velocity anomalies may possess considerable seismogenic potential;(4)the Coulomb failure stress calculations indicate that the Luding earthquake has imposed nontrivial stress loading in the Bamei-Kangding segment,and may shorten the earthquake recurrence intervals of the southern Selaha fault,the Zheduotang fault,and the Xuemenkan segment of the Xianshuihe fault zone.Thus,the Luding earthquake may potentially pose threats to the Sichuan-Xizang railway passing through this region. 展开更多
关键词 Xianshuihe fault zone Bamei-Kangding segment Luding earthquake Dense-array ambient noise tomography Seismogenic environment for moderate to strong earthquakes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部