Energy has always been the most concerned topic in the world due to the large consumption. Various types of energy have been exploited and developed to enhance the output amount so that high requirements can be met. L...Energy has always been the most concerned topic in the world due to the large consumption. Various types of energy have been exploited and developed to enhance the output amount so that high requirements can be met. Like the hydro-energy, wind energy, and tidal energy, light energy as a renewable, clean, and widespread energy can be easily harvested. In microcosmic scale, some specific proteins and enzymes in green plants and bacteria play an important role in light harvest and energy conversion via photosynthesis. Inspired by the biomimetic sparks,these bioactive macromolecules and some artificially synthetic unites have been integrated together to improve the light-harvesting, and enhance their utilization efficiency. In this feature article, we primarily discuss that how to create the bio-inorganic hybrid energy converted system via biomimetic assembly strategy and artificially achieve the transformation from light into bioenergy, meanwhile highlight some promising works.展开更多
Biomolecular self-assembly based on peptides and proteins is a general phenomenon encountered in natural and synthetic systems.Liquid–liquid phase separation(LLPS)is intimately involved in biomolecular self-assembly,...Biomolecular self-assembly based on peptides and proteins is a general phenomenon encountered in natural and synthetic systems.Liquid–liquid phase separation(LLPS)is intimately involved in biomolecular self-assembly,yet the key factors at a molecular scale activating or modulating such a process remain largely elusive.Herein,we discovered in our experiments that multistep desolvation is fundamental to the formation and evolution of peptide-rich droplets:The first step was partial desolvation of peptides to form peptide clusters,and the second step was selective desolvation of hydrophobic groups within clusters to trigger LLPS and the formation of peptiderich droplets,followed by complete desolvation of droplets,initiating the nucleation of peptide selfassembly.Manipulation of the degree of desolvation at different stages was an effective strategy to control the self-assembly pathways and polymorphisms.This study sheds light on the molecular origin of LLPS-mediated self-assembly distinct from classical one-step self-assembly and paves the way for the precise control of supramolecular self-assembly.展开更多
Photodynamic therapy(PDT)has emerged as an efficient method for cancer therapy.However,traditional photosensitizers(PSs)always have low bioavailability.For example,hydrophobic PSs tend to aggregate in cells and lead t...Photodynamic therapy(PDT)has emerged as an efficient method for cancer therapy.However,traditional photosensitizers(PSs)always have low bioavailability.For example,hydrophobic PSs tend to aggregate in cells and lead to aggregation-induced quenching;while hydrophilic PSs that have good solubility in water systems can hardly penetrate into cells whose membranes are lipophilic.To overcome these drawbacks,suitable PSs that meet the requirements of PDT are needed.Numerous investigations have been introduced,especially the molecular-assembly technique that can increase the bioavailability of PSs during the tumor therapy process.Besides,increasing the quantum yield of reactive oxygen species(ROS)by adjusting the PS triplet state lifetime as well as developing aggregation-induced emission(AIE)agents can also improve the PDT effect.This review summarizes the molecular-assembly technique to obtain intelligent PSs to achieve high PDT efficiency.First,increasing the quantum yield of ROS by decreasing the energy gap between S_(1)and T_(1)states or increasing the spin–orbit coupling Hamiltonian are introduced.Second,we present the bioavailability of traditional PSs by improving the amphiphilicity of the PSs or using intelligent nanostructures.Then,the AIE PSs that can form ROS in the aggregated state under irradiation are described.Finally,the perspective and challenges of PDT are discussed.展开更多
Aggregation-induced emission(AIE)molecules possess notable advantages outperforming traditional aggregation caused quenching(ACQ)materials on various aspects.They are rapidly developed these years.More and more AIE lu...Aggregation-induced emission(AIE)molecules possess notable advantages outperforming traditional aggregation caused quenching(ACQ)materials on various aspects.They are rapidly developed these years.More and more AIE luminogens(AIEgens)are designed to possess multifunctions such as the abilities of near-infrared two-photon absorption and reactive oxygen species(ROS)generation,which could be used for deep tissue imaging and photodynamic therapy.The AIEgens exhibit great potential in biological application field.However,despite the photophysics stability and ROS generation ability in aggregated states are favorable conditions,their applications in biological field are retarded by uncontrolled size,single imaging mode,low targeting efficiency,and also poor biocompatibility and dispersibility in physiological environment.The combination of AIEgen and lipid is a straightforward,promising,and intensively used way to solve the above problems.Due to the special amphipathic property of lipid,which results from a hydrophilic head and hydrophobic tail structure,there are various possibilities of combination modes between lipid and AIEgen.Even a little procedure or condition change during the synthesis process will impact the structure of obtained product,which can further influence its application.Herein,we summarize the synthesis methods of different AIEgen-lipid compounds with diverse structures and properties,as well as their biological applications in this contribution,which has not been presented before,being aimed at serving as a synthesis and application reference for these promising AIEgen-lipid compounds applied in biological region.展开更多
Photodynamic therapy(PDT)has emerged as an efficient treatment for cancers in recent years.However,PDT is limited by low utilization of photosensitizers and tumor hypoxia.The short lifetime and diffusion radius of sin...Photodynamic therapy(PDT)has emerged as an efficient treatment for cancers in recent years.However,PDT is limited by low utilization of photosensitizers and tumor hypoxia.The short lifetime and diffusion radius of singlet oxygen(^(1)O_(2))further decrease the anticancer effect of PDT.Herein,we design and synthesize diameter-controllable photosensitizer nanoparticles(NPs)which can specifically accumulate on the mitochondria of cancer cells and increase the O_(2) concentrations nearby to enhance PDT efficacy.Catalase(CAT)molecules are initially conjugated with rose bengal(RB)via amide bonds and then self-assembled into CAT-RB NPs.The NPs show excellent enzyme activity in catalyzing the decomposition of hydrogen peroxide into O_(2),which makes the yield of 1O21.65-fold higher than that of free RB.The intracellular uptake efficiency of NPs is increased by up to 150 times compared with pure RB.After endocytosis,the NPs mainly located at mitochondria and ^(1)O_(2) can directly destroy mitochondria under irradiation,thereby greatly decreasing the production of adenosine triphosphate and further leading to the apoptosis of cancer cells.Moreover,CAT-RB NPs can accumulate in tumors and show excellent PDT effects in vivo.This work opens a unique path to break through the current limitations of PDT in cancer treatment.展开更多
Herein,we couple a synthetic electrozyme in a supramolecule-assembled nanoarchitecture to achieve enhanced bioenergy transformation by mimicking mitochondrial oxidative phosphorylation.Different from the natural count...Herein,we couple a synthetic electrozyme in a supramolecule-assembled nanoarchitecture to achieve enhanced bioenergy transformation by mimicking mitochondrial oxidative phosphorylation.Different from the natural counterpart,the metal-free electrozyme is a semiconducting polymer deposited on an electrode.The wellmatched electrocatalytic property of the electrozyme permits oxidization of reduced nicotinamide adenine dinucleotide(NADH)to release protons under a much lower electric potential.As a consequence,the generated proton gradient drives rotary catalysis of adenosine 5′-triphosphate(ATP)synthase reconstituted in a lipid membrane to produce ATP.Remarkably,electrochemical bioenergy conversion of NADH to ATP is accomplished with much higher efficiency in such a bio-like system compared with the natural mitochondria.This work integrates synthetic and natural catalytic chemistry to facilitate enhanced bioenergy transformation,thereby greatly improving prospects in ATP-fueled bioapplications.展开更多
Photosystem II (PSII) is a photoactive protein that can drive water oxidation under light irradiation. Recently, PSII has been broadly investigated with the high demand on the bioenergy. Here, we demonstrate a facil...Photosystem II (PSII) is a photoactive protein that can drive water oxidation under light irradiation. Recently, PSII has been broadly investigated with the high demand on the bioenergy. Here, we demonstrate a facile approach for the fabrication of a photoactive electrode by the integration of PSII with quantum dots (QDs)/polyelectrolyte multilayers. The assembled QDs and PSII film with a polyelectrolyte based substrate via layer-by-layer assembly can remain the photoactivity of the PSII and broaden the absorption spectrum of PSII to produce a high photocur- rent yield. The co-assembly exhibits an obviously enhanced photocurrent under UV light irradiation. The proposed strategy can be considered for the reference and usage of PSII toward the solar energy conversion.展开更多
What is the most favorite and original chemistry developed in your research group?The most favorite and original chemistry developed in my research group is about the reconstitution of motor proteins in artificially d...What is the most favorite and original chemistry developed in your research group?The most favorite and original chemistry developed in my research group is about the reconstitution of motor proteins in artificially designed and assembled units.It is based on the molecular assembly technique,but the method is different from the conventional approach.展开更多
The manipulation of supramolecular assembly enables single-component architectures to possess diverse structures and functions.Here,we report directed phase transitions of dipeptide supramolecular gel to crystals with...The manipulation of supramolecular assembly enables single-component architectures to possess diverse structures and functions.Here,we report directed phase transitions of dipeptide supramolecular gel to crystals with excellent selectivity and tunable mechanical properties.To be specific,lamellar-to-orthorhombic rearrangement of dipeptide molecules in the supramolecular assembly was guided by application of ammonia gas,while lamellar-tohexagonal realignment was generated upon water vapor exposure of the assembly.Importantly,this crystal phase control originated from distinct gas-mediated reconstitution of hydrogen-bonding interactions,which endowed the dipeptide materials with remarkably modulated stiffness.The selective phase transformation offers a simple and effective platform for self-assembling peptide crystals with diverse long-range-ordered structures from a single gel-state aggregation.This work opens up new perspectives on peptide-based biomaterials via gas-directed hydrogen-bonding chemistry.展开更多
We construct a natural-artificial hybrid architecture containing black phosphorus nanosheets(BPNS)to enhance photosynthesis of chloroplast in a positive-feedback manner.In this architecture,oxygen yielded by photosynt...We construct a natural-artificial hybrid architecture containing black phosphorus nanosheets(BPNS)to enhance photosynthesis of chloroplast in a positive-feedback manner.In this architecture,oxygen yielded by photosynthesis during water splitting by photosystemⅡpromotes the photoreaction of BPNS to produce proton and inorganic phosphate(Pi).Further,transmembrane proton gradient is increased to drive ATP synthase to synthesize ATP.Meanwhile,additional photogenerated electrons produced by BPNS are transferred to the photosynthesis process.As a consequence,photosynthesis performed by chloroplast is improved.Quantitatively,photophosphorylation efficacy of the hybrid system is increased by 1.89 times in the case of Pi deficiency.This work offers a new path to enhance solar-to-chemical energy conversion,holding promise in boosting natural photosynthesis.展开更多
基金finically supported by the National Natural Science Foundation of China(Nos.21303219,21433010,21320102004,and 21273250)the National Basic Research Program of China(973 program,No.2013CB932802)
文摘Energy has always been the most concerned topic in the world due to the large consumption. Various types of energy have been exploited and developed to enhance the output amount so that high requirements can be met. Like the hydro-energy, wind energy, and tidal energy, light energy as a renewable, clean, and widespread energy can be easily harvested. In microcosmic scale, some specific proteins and enzymes in green plants and bacteria play an important role in light harvest and energy conversion via photosynthesis. Inspired by the biomimetic sparks,these bioactive macromolecules and some artificially synthetic unites have been integrated together to improve the light-harvesting, and enhance their utilization efficiency. In this feature article, we primarily discuss that how to create the bio-inorganic hybrid energy converted system via biomimetic assembly strategy and artificially achieve the transformation from light into bioenergy, meanwhile highlight some promising works.
基金supported by the National Science Fund for Distinguished Young Scholars of China(grant no.22025207)National Natural Science Foundation of China(grant nos.22172172 and 22232006)+3 种基金Youth Innovation Promotion Association of CAS(grant no.2022049)China Scholarship Council(CSC,grant no.202104910187)IPE Project for Frontier Basic Research(grant no.QYJC-2022-011)Natural Science Foundation of Hebei Province(grant nos.B2020103036 and B2020103025).
文摘Biomolecular self-assembly based on peptides and proteins is a general phenomenon encountered in natural and synthetic systems.Liquid–liquid phase separation(LLPS)is intimately involved in biomolecular self-assembly,yet the key factors at a molecular scale activating or modulating such a process remain largely elusive.Herein,we discovered in our experiments that multistep desolvation is fundamental to the formation and evolution of peptide-rich droplets:The first step was partial desolvation of peptides to form peptide clusters,and the second step was selective desolvation of hydrophobic groups within clusters to trigger LLPS and the formation of peptiderich droplets,followed by complete desolvation of droplets,initiating the nucleation of peptide selfassembly.Manipulation of the degree of desolvation at different stages was an effective strategy to control the self-assembly pathways and polymorphisms.This study sheds light on the molecular origin of LLPS-mediated self-assembly distinct from classical one-step self-assembly and paves the way for the precise control of supramolecular self-assembly.
基金supported by the National Natural Science Foundation of China(grant nos.22193031,22193032,21972033).
文摘Photodynamic therapy(PDT)has emerged as an efficient method for cancer therapy.However,traditional photosensitizers(PSs)always have low bioavailability.For example,hydrophobic PSs tend to aggregate in cells and lead to aggregation-induced quenching;while hydrophilic PSs that have good solubility in water systems can hardly penetrate into cells whose membranes are lipophilic.To overcome these drawbacks,suitable PSs that meet the requirements of PDT are needed.Numerous investigations have been introduced,especially the molecular-assembly technique that can increase the bioavailability of PSs during the tumor therapy process.Besides,increasing the quantum yield of reactive oxygen species(ROS)by adjusting the PS triplet state lifetime as well as developing aggregation-induced emission(AIE)agents can also improve the PDT effect.This review summarizes the molecular-assembly technique to obtain intelligent PSs to achieve high PDT efficiency.First,increasing the quantum yield of ROS by decreasing the energy gap between S_(1)and T_(1)states or increasing the spin–orbit coupling Hamiltonian are introduced.Second,we present the bioavailability of traditional PSs by improving the amphiphilicity of the PSs or using intelligent nanostructures.Then,the AIE PSs that can form ROS in the aggregated state under irradiation are described.Finally,the perspective and challenges of PDT are discussed.
基金National Key R&D Program of China,Grant/Award Number:2018YFE0205400National Nature Science Foundation of China,Grant/Award Numbers:21961142022,21673056,21972033+2 种基金China Postdoctoral Science Foundation funded project,Grant/Award Number:2019M652361Postdoctoral Innovation Program of Shandong Province,Grant/Award Number:201903012CASKey Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,Grant/Award Number:NSKF202006。
文摘Aggregation-induced emission(AIE)molecules possess notable advantages outperforming traditional aggregation caused quenching(ACQ)materials on various aspects.They are rapidly developed these years.More and more AIE luminogens(AIEgens)are designed to possess multifunctions such as the abilities of near-infrared two-photon absorption and reactive oxygen species(ROS)generation,which could be used for deep tissue imaging and photodynamic therapy.The AIEgens exhibit great potential in biological application field.However,despite the photophysics stability and ROS generation ability in aggregated states are favorable conditions,their applications in biological field are retarded by uncontrolled size,single imaging mode,low targeting efficiency,and also poor biocompatibility and dispersibility in physiological environment.The combination of AIEgen and lipid is a straightforward,promising,and intensively used way to solve the above problems.Due to the special amphipathic property of lipid,which results from a hydrophilic head and hydrophobic tail structure,there are various possibilities of combination modes between lipid and AIEgen.Even a little procedure or condition change during the synthesis process will impact the structure of obtained product,which can further influence its application.Herein,we summarize the synthesis methods of different AIEgen-lipid compounds with diverse structures and properties,as well as their biological applications in this contribution,which has not been presented before,being aimed at serving as a synthesis and application reference for these promising AIEgen-lipid compounds applied in biological region.
基金the financial support of the National Natural Science Foundation of China(grant nos.22193031,21961142022,21872150,and 22072160).
文摘Photodynamic therapy(PDT)has emerged as an efficient treatment for cancers in recent years.However,PDT is limited by low utilization of photosensitizers and tumor hypoxia.The short lifetime and diffusion radius of singlet oxygen(^(1)O_(2))further decrease the anticancer effect of PDT.Herein,we design and synthesize diameter-controllable photosensitizer nanoparticles(NPs)which can specifically accumulate on the mitochondria of cancer cells and increase the O_(2) concentrations nearby to enhance PDT efficacy.Catalase(CAT)molecules are initially conjugated with rose bengal(RB)via amide bonds and then self-assembled into CAT-RB NPs.The NPs show excellent enzyme activity in catalyzing the decomposition of hydrogen peroxide into O_(2),which makes the yield of 1O21.65-fold higher than that of free RB.The intracellular uptake efficiency of NPs is increased by up to 150 times compared with pure RB.After endocytosis,the NPs mainly located at mitochondria and ^(1)O_(2) can directly destroy mitochondria under irradiation,thereby greatly decreasing the production of adenosine triphosphate and further leading to the apoptosis of cancer cells.Moreover,CAT-RB NPs can accumulate in tumors and show excellent PDT effects in vivo.This work opens a unique path to break through the current limitations of PDT in cancer treatment.
基金This work was supported by the NationalNatural Science Foundation of China(grant nos.221930301,21961142022,22072160,and 21872150).J.F.particularly thanks to Institute of Chemistry,CAS(grant no.Y6290512B1).
文摘Herein,we couple a synthetic electrozyme in a supramolecule-assembled nanoarchitecture to achieve enhanced bioenergy transformation by mimicking mitochondrial oxidative phosphorylation.Different from the natural counterpart,the metal-free electrozyme is a semiconducting polymer deposited on an electrode.The wellmatched electrocatalytic property of the electrozyme permits oxidization of reduced nicotinamide adenine dinucleotide(NADH)to release protons under a much lower electric potential.As a consequence,the generated proton gradient drives rotary catalysis of adenosine 5′-triphosphate(ATP)synthase reconstituted in a lipid membrane to produce ATP.Remarkably,electrochemical bioenergy conversion of NADH to ATP is accomplished with much higher efficiency in such a bio-like system compared with the natural mitochondria.This work integrates synthetic and natural catalytic chemistry to facilitate enhanced bioenergy transformation,thereby greatly improving prospects in ATP-fueled bioapplications.
基金This work was supported financially by the National Natural Science Foundation of China (Nos. 21433010, 21320102004, 21321063) and the National Basic Research Program of China (973 Program, Nos. 2013CB932800, 2013YQ160551)
文摘Photosystem II (PSII) is a photoactive protein that can drive water oxidation under light irradiation. Recently, PSII has been broadly investigated with the high demand on the bioenergy. Here, we demonstrate a facile approach for the fabrication of a photoactive electrode by the integration of PSII with quantum dots (QDs)/polyelectrolyte multilayers. The assembled QDs and PSII film with a polyelectrolyte based substrate via layer-by-layer assembly can remain the photoactivity of the PSII and broaden the absorption spectrum of PSII to produce a high photocur- rent yield. The co-assembly exhibits an obviously enhanced photocurrent under UV light irradiation. The proposed strategy can be considered for the reference and usage of PSII toward the solar energy conversion.
基金The authors acknowledge the finan cial support from the National Natural Science Foundation of China(Nos.21433010,21872151 and 21320102004)。
文摘What is the most favorite and original chemistry developed in your research group?The most favorite and original chemistry developed in my research group is about the reconstitution of motor proteins in artificially designed and assembled units.It is based on the molecular assembly technique,but the method is different from the conventional approach.
基金The authors gratefully acknowledge the financial support for this research from the National Nature Science Foundation of China(nos.21961142022,21872150,and 22072160)J.F.particularly thanks to the Youth Innovation Promotion Association of CAS(no.2016032)Institute of Chemistry,CAS(no.Y6290512B1).
文摘The manipulation of supramolecular assembly enables single-component architectures to possess diverse structures and functions.Here,we report directed phase transitions of dipeptide supramolecular gel to crystals with excellent selectivity and tunable mechanical properties.To be specific,lamellar-to-orthorhombic rearrangement of dipeptide molecules in the supramolecular assembly was guided by application of ammonia gas,while lamellar-tohexagonal realignment was generated upon water vapor exposure of the assembly.Importantly,this crystal phase control originated from distinct gas-mediated reconstitution of hydrogen-bonding interactions,which endowed the dipeptide materials with remarkably modulated stiffness.The selective phase transformation offers a simple and effective platform for self-assembling peptide crystals with diverse long-range-ordered structures from a single gel-state aggregation.This work opens up new perspectives on peptide-based biomaterials via gas-directed hydrogen-bonding chemistry.
基金the financial support for this research from the National Natural Science Foundation of China(Nos.221930301,21961142022,21872150,and 22072160)J.F.particularly thanks to the Youth Innovation Promotion Association of CAS(No.2016032)Instituteof Chemistry,CAS(No.Y6290512B1).
文摘We construct a natural-artificial hybrid architecture containing black phosphorus nanosheets(BPNS)to enhance photosynthesis of chloroplast in a positive-feedback manner.In this architecture,oxygen yielded by photosynthesis during water splitting by photosystemⅡpromotes the photoreaction of BPNS to produce proton and inorganic phosphate(Pi).Further,transmembrane proton gradient is increased to drive ATP synthase to synthesize ATP.Meanwhile,additional photogenerated electrons produced by BPNS are transferred to the photosynthesis process.As a consequence,photosynthesis performed by chloroplast is improved.Quantitatively,photophosphorylation efficacy of the hybrid system is increased by 1.89 times in the case of Pi deficiency.This work offers a new path to enhance solar-to-chemical energy conversion,holding promise in boosting natural photosynthesis.