A GaN-based pin neutron detector with a 6LiF conversion layer was fabricated, and can be used to detect thermal neutrons. Measurement of the electrical characteristic of the GaN-based pin neutron detector showed that ...A GaN-based pin neutron detector with a 6LiF conversion layer was fabricated, and can be used to detect thermal neutrons. Measurement of the electrical characteristic of the GaN-based pin neutron detector showed that the reverse leakage current of the neutron detector was reduced significantly after deposition of a 6LiF conversion layer on the detector surface. The thermal neutrons used in this experiment were obtained from an 241Am-Be fast neutron source after being moderated by 100-mm-thick high-density polyethylene. The experimental results show that the detector with 16.9-μm thick 6LiF achieved a maximum neutron detection efficiency of 1.9% at a reverse bias of 0 V, which is less than the theoretical detection efficiency of 4.1% calculated for our GaN neutron detectors.展开更多
Dielectric elastomers(DEs)have emerged as one of the most promising artificial muscle technologies,due to their exceptional properties such as large actuation strain,fast response,high energy density,and flexible proc...Dielectric elastomers(DEs)have emerged as one of the most promising artificial muscle technologies,due to their exceptional properties such as large actuation strain,fast response,high energy density,and flexible processibility for various configurations.Over the past two decades,researchers have been working on developing DE materials with improved properties and exploring innovative applications of dielectric elastomer actuators(DEAs).This review article focuses on two main topics:recent material innovation of DEs and development of multilayer stacking processes for DEAs,which are important to promoting commercialization of DEs.It begins by explaining the working principle of a DEA.Then,recently developed strategies for preparing new DE materials are introduced,including reducing mechanical stiffness,increasing dielectric permittivity,suppressing viscoelasticity loss,and mitigating electromechanical instability without pre-stretching.In the next section,different multilayer stacking methods for fabricating multilayer DEAs are discussed,including conventional dry stacking,wet stacking,a novel dry stacking method,and micro-fabrication-enabled stacking techniques.This review provides a comprehensive and up-to-date overview of recent developments in high-performance DE materials and multilayer stacking methods.It highlights the progress made in the field and also discusses potential future directions for further advancements.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61964001 and 61961001)the State Key Laboratory of Particle Detection and Electronics(Grant No.SKLPDE-KF-2019)+2 种基金the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20192BAB207033 and 20181BAB202026)the Foundation of State Key Laboratory Breeding Base of Nuclear Resources and Environment(East China Institute of Technology)(Grant No.NRE1515)the Jiangxi Provincial Postdoctoral Science Foundation,China(Grant No.2018KY31).
文摘A GaN-based pin neutron detector with a 6LiF conversion layer was fabricated, and can be used to detect thermal neutrons. Measurement of the electrical characteristic of the GaN-based pin neutron detector showed that the reverse leakage current of the neutron detector was reduced significantly after deposition of a 6LiF conversion layer on the detector surface. The thermal neutrons used in this experiment were obtained from an 241Am-Be fast neutron source after being moderated by 100-mm-thick high-density polyethylene. The experimental results show that the detector with 16.9-μm thick 6LiF achieved a maximum neutron detection efficiency of 1.9% at a reverse bias of 0 V, which is less than the theoretical detection efficiency of 4.1% calculated for our GaN neutron detectors.
基金This work is supported by the National Natural Science Foundation of China(No.T229722).
文摘Dielectric elastomers(DEs)have emerged as one of the most promising artificial muscle technologies,due to their exceptional properties such as large actuation strain,fast response,high energy density,and flexible processibility for various configurations.Over the past two decades,researchers have been working on developing DE materials with improved properties and exploring innovative applications of dielectric elastomer actuators(DEAs).This review article focuses on two main topics:recent material innovation of DEs and development of multilayer stacking processes for DEAs,which are important to promoting commercialization of DEs.It begins by explaining the working principle of a DEA.Then,recently developed strategies for preparing new DE materials are introduced,including reducing mechanical stiffness,increasing dielectric permittivity,suppressing viscoelasticity loss,and mitigating electromechanical instability without pre-stretching.In the next section,different multilayer stacking methods for fabricating multilayer DEAs are discussed,including conventional dry stacking,wet stacking,a novel dry stacking method,and micro-fabrication-enabled stacking techniques.This review provides a comprehensive and up-to-date overview of recent developments in high-performance DE materials and multilayer stacking methods.It highlights the progress made in the field and also discusses potential future directions for further advancements.