The Extreme Learning Machine(ELM) and its variants are effective in many machine learning applications such as Imbalanced Learning(IL) or Big Data(BD) learning. However, they are unable to solve both imbalanced ...The Extreme Learning Machine(ELM) and its variants are effective in many machine learning applications such as Imbalanced Learning(IL) or Big Data(BD) learning. However, they are unable to solve both imbalanced and large-volume data learning problems. This study addresses the IL problem in BD applications. The Distributed and Weighted ELM(DW-ELM) algorithm is proposed, which is based on the Map Reduce framework. To confirm the feasibility of parallel computation, first, the fact that matrix multiplication operators are decomposable is illustrated.Then, to further improve the computational efficiency, an Improved DW-ELM algorithm(IDW-ELM) is developed using only one Map Reduce job. The successful operations of the proposed DW-ELM and IDW-ELM algorithms are finally validated through experiments.展开更多
The skyline-join operator, as an important variant of skylines, plays an important role in multi-criteria decision making problems. However, as the data scale increases, previous methods of skyline-join queries cannot...The skyline-join operator, as an important variant of skylines, plays an important role in multi-criteria decision making problems. However, as the data scale increases, previous methods of skyline-join queries cannot be applied to new applications. Therefore, in this paper, it is the first attempt to propose a scalable method to process skyline-join queries in distributed databases. First, a tailored distributed framework is presented to facilitate the computation of skyline-join queries. Second, the distributed skyline-join query algorithm (DSJQ) is designed to process skyline-join queries. DSJQ contains two phases. In the first phase, two filtering strategies are used to filter out unpromising tuples from the original tables. The remaining tuples are transmitted to the corresponding data nodes according a partition function, which can guarantee that the tuples with the same join value are transferred to the same node. In the second phase, we design a scheduling plan based on rotations to calculate the final skyline-join result. The scheduling plan can ensure that calculations are equally assigned to all the data nodes, and the calculations on each data node can be processed in parallel without creating a bottleneck node. Finally, the effectiveness of DSJQ is evaluated through a series of experiments.展开更多
基金partially supported by the National Natural Science Foundation of China(Nos.61402089,61472069,and 61501101)the Fundamental Research Funds for the Central Universities(Nos.N161904001,N161602003,and N150408001)+2 种基金the Natural Science Foundation of Liaoning Province(No.2015020553)the China Postdoctoral Science Foundation(No.2016M591447)the Postdoctoral Science Foundation of Northeastern University(No.20160203)
文摘The Extreme Learning Machine(ELM) and its variants are effective in many machine learning applications such as Imbalanced Learning(IL) or Big Data(BD) learning. However, they are unable to solve both imbalanced and large-volume data learning problems. This study addresses the IL problem in BD applications. The Distributed and Weighted ELM(DW-ELM) algorithm is proposed, which is based on the Map Reduce framework. To confirm the feasibility of parallel computation, first, the fact that matrix multiplication operators are decomposable is illustrated.Then, to further improve the computational efficiency, an Improved DW-ELM algorithm(IDW-ELM) is developed using only one Map Reduce job. The successful operations of the proposed DW-ELM and IDW-ELM algorithms are finally validated through experiments.
文摘The skyline-join operator, as an important variant of skylines, plays an important role in multi-criteria decision making problems. However, as the data scale increases, previous methods of skyline-join queries cannot be applied to new applications. Therefore, in this paper, it is the first attempt to propose a scalable method to process skyline-join queries in distributed databases. First, a tailored distributed framework is presented to facilitate the computation of skyline-join queries. Second, the distributed skyline-join query algorithm (DSJQ) is designed to process skyline-join queries. DSJQ contains two phases. In the first phase, two filtering strategies are used to filter out unpromising tuples from the original tables. The remaining tuples are transmitted to the corresponding data nodes according a partition function, which can guarantee that the tuples with the same join value are transferred to the same node. In the second phase, we design a scheduling plan based on rotations to calculate the final skyline-join result. The scheduling plan can ensure that calculations are equally assigned to all the data nodes, and the calculations on each data node can be processed in parallel without creating a bottleneck node. Finally, the effectiveness of DSJQ is evaluated through a series of experiments.