[Objectives]The CRISPR/Cas9(Clustered regulatory interspaced short palindromic repeat/Cas9)gene editing technology is the third generation of"genome fixed-point editing technology"following the"zinc fin...[Objectives]The CRISPR/Cas9(Clustered regulatory interspaced short palindromic repeat/Cas9)gene editing technology is the third generation of"genome fixed-point editing technology"following the"zinc finger endonuclease(ZFN)"and"transcription activator effector nuclease(TALEN)".Glucotransferase genes UGT84A2 and UGT84A4,can simultaneously convert hydroxycinnamate into 1-O-β-glucose esters as isozymes.The CRISPR/Cas9 technology was used to construct double mutants of Arabidopsis thaliana ugt84a2/ugt84a4.[Methods]A CRISPR/Cas9 double mutant expression vector was constructed using UGT84A2 and UGT84A4 as the target genes.The Agrobacterium-mediated dip dyeing method was used to transform wild-type A.thaliana,and the CRISPR/Cas9system was used to target and knock out A.thaliana UGT84A2 and UGT84A4 genes.[Results]The descendants of A.thaliana with the UGT84A2/UGT84A4 gene were sequenced and analyzed.Thirteen positively transformed plants obtained were analyzed according to the sequencing results,and the ugt84a2/ugt84a4 double mutants were screened.[Conclusions]This study provides a reference for the functional study of UGT84A2 and UGT84A4 isoenzyme genes in other species,as well as strong theoretical and method support for accelerating the development and utilization of UGT84A2/UGT84A4 functional gene resources.展开更多
Aims Radial growth in response to climate has been reported in many trees,but the sex-specific responses of tree-ring growth associated with altitude in dioecious trees are still poorly known.This study aims to examin...Aims Radial growth in response to climate has been reported in many trees,but the sex-specific responses of tree-ring growth associated with altitude in dioecious trees are still poorly known.This study aims to examine whether(i)there are sex-related responses of tree-ring growth to climate in dioecious trees;(ii)these responses could be changed with altitude elevation.Methods The tree-ring width and basal area increment(BAI)were measured over the past 30 years(1982-2011),and the sexual differences in relationship between BAI and time span and correlations between ring width and climatic factors were investigated in Populus cathayana trees at two altitude sites(1,450 m and 1,750 m a.s.l.)in Xiaowutai Mountain,Hebei,north China.Important Findings The BAI was increased over the past 30 years.Trees at high-altitude sites had significantly lower mean ring width and mean BAI than those trees at low-altitude sites(P<0.001).In addition,sexual dif-ferences in tree-ring growth and its response to climate were more pronounced by altitude elevation.Male trees had a significantly larger mean ring width and mean BAI than did females at high-alti-tude sites,whereas no significant sexual differences in these traits were detected at low-altitude sites.Female trees were sensitive to previous October-November temperatures at high altitude but to current February and April precipitation at low altitude(P<0.05),whereas male trees were sensitive to current June temperature at high altitude but to January precipitation at low altitude(P<0.05).Our results indicated that the responses of tree-ring growth to cli-mate are sex dependent and can be changed with altitude elevation.展开更多
基金Supported by Natural Science Foundation of Shandong Province(ZR2017PC007)Project of Shandong(Linyi)Institute of Modern Agriculture of Zhejiang University for Serving Local Economic Development(ZDNY-2020-FWLY02007)Doctoral Program of China West Normal University(18Q051)。
文摘[Objectives]The CRISPR/Cas9(Clustered regulatory interspaced short palindromic repeat/Cas9)gene editing technology is the third generation of"genome fixed-point editing technology"following the"zinc finger endonuclease(ZFN)"and"transcription activator effector nuclease(TALEN)".Glucotransferase genes UGT84A2 and UGT84A4,can simultaneously convert hydroxycinnamate into 1-O-β-glucose esters as isozymes.The CRISPR/Cas9 technology was used to construct double mutants of Arabidopsis thaliana ugt84a2/ugt84a4.[Methods]A CRISPR/Cas9 double mutant expression vector was constructed using UGT84A2 and UGT84A4 as the target genes.The Agrobacterium-mediated dip dyeing method was used to transform wild-type A.thaliana,and the CRISPR/Cas9system was used to target and knock out A.thaliana UGT84A2 and UGT84A4 genes.[Results]The descendants of A.thaliana with the UGT84A2/UGT84A4 gene were sequenced and analyzed.Thirteen positively transformed plants obtained were analyzed according to the sequencing results,and the ugt84a2/ugt84a4 double mutants were screened.[Conclusions]This study provides a reference for the functional study of UGT84A2 and UGT84A4 isoenzyme genes in other species,as well as strong theoretical and method support for accelerating the development and utilization of UGT84A2/UGT84A4 functional gene resources.
基金This research was supported by the National Natural Science Foundation of China(31170389 and 31370596)the Innovative Team Foundation of the Sichuan Provincial Department of Education(14TD0015).
文摘Aims Radial growth in response to climate has been reported in many trees,but the sex-specific responses of tree-ring growth associated with altitude in dioecious trees are still poorly known.This study aims to examine whether(i)there are sex-related responses of tree-ring growth to climate in dioecious trees;(ii)these responses could be changed with altitude elevation.Methods The tree-ring width and basal area increment(BAI)were measured over the past 30 years(1982-2011),and the sexual differences in relationship between BAI and time span and correlations between ring width and climatic factors were investigated in Populus cathayana trees at two altitude sites(1,450 m and 1,750 m a.s.l.)in Xiaowutai Mountain,Hebei,north China.Important Findings The BAI was increased over the past 30 years.Trees at high-altitude sites had significantly lower mean ring width and mean BAI than those trees at low-altitude sites(P<0.001).In addition,sexual dif-ferences in tree-ring growth and its response to climate were more pronounced by altitude elevation.Male trees had a significantly larger mean ring width and mean BAI than did females at high-alti-tude sites,whereas no significant sexual differences in these traits were detected at low-altitude sites.Female trees were sensitive to previous October-November temperatures at high altitude but to current February and April precipitation at low altitude(P<0.05),whereas male trees were sensitive to current June temperature at high altitude but to January precipitation at low altitude(P<0.05).Our results indicated that the responses of tree-ring growth to cli-mate are sex dependent and can be changed with altitude elevation.