Human skin contains slowly adaptive(SA)and rapidly adaptive(RA)mechanoreceptors,which respond differently to external stimuli.Based on human tactile perception principles,the fabrication of a self-powered electronic s...Human skin contains slowly adaptive(SA)and rapidly adaptive(RA)mechanoreceptors,which respond differently to external stimuli.Based on human tactile perception principles,the fabrication of a self-powered electronic skin(e-skin)that simultaneously mimics SA-and RA-mechanoreceptors is a prime need for robots and artificial prosthetics to interact with the surrounding environment.However,the complex process of merging multimode sensors to mimic SA-and RA-mechanoreceptors hinders their utilization in e-skins.We proposed SA-and RA-mechanoreceptors based on n-type and semi-insulating GaN nanowire arrays.The SA-and RA-mechanoreceptors demonstrated distinguished features such as grasping of objects and detection of their surface textures.Based on piezoelectric sensing principles,the proposed e-skin can simultaneously mimic static and dynamic pressure signals.Mechanoreceptors further detected several stimuli of various pressures with low and high frequencies.The response and reset times showed by SA-mechanoreceptors were 11 and 18 ms under 1-Hz frequency,which are rapid enough for practical e-skin applications.展开更多
基金supported by the National Research Foundation of Korea (NRF),funded by the Ministry of Education,Science,and Technology (2018R1A6A1A03024334,2021M3D1A2039641).
文摘Human skin contains slowly adaptive(SA)and rapidly adaptive(RA)mechanoreceptors,which respond differently to external stimuli.Based on human tactile perception principles,the fabrication of a self-powered electronic skin(e-skin)that simultaneously mimics SA-and RA-mechanoreceptors is a prime need for robots and artificial prosthetics to interact with the surrounding environment.However,the complex process of merging multimode sensors to mimic SA-and RA-mechanoreceptors hinders their utilization in e-skins.We proposed SA-and RA-mechanoreceptors based on n-type and semi-insulating GaN nanowire arrays.The SA-and RA-mechanoreceptors demonstrated distinguished features such as grasping of objects and detection of their surface textures.Based on piezoelectric sensing principles,the proposed e-skin can simultaneously mimic static and dynamic pressure signals.Mechanoreceptors further detected several stimuli of various pressures with low and high frequencies.The response and reset times showed by SA-mechanoreceptors were 11 and 18 ms under 1-Hz frequency,which are rapid enough for practical e-skin applications.