Photoluminescent hybrid materials containing carboxymethyl cellulose and lanthanide ions(Eu3+, Tb3+)were prepared by a facile method under ambient conditions. Lanthanide ions were covalently grafted to the cellulo...Photoluminescent hybrid materials containing carboxymethyl cellulose and lanthanide ions(Eu3+, Tb3+)were prepared by a facile method under ambient conditions. Lanthanide ions were covalently grafted to the cellulose framework through coordination with the carboxylic groups of the cellulose. Hybrid materials were fabricated as hydrogel and aerogel. As shown by SEM and pore parameters, aerogel materials which were obtained by supercritical CO2 drying show hierarchical porous structure. The photoluminescence spectrum of the hybrid materials shows the characteristic red emission of Eu3+ ion and green emission of Tb3+. Further luminescent investigations reveal that these hybrid materials can detect Fe3+ with relative selectivity and high sensitivity, which suggests that the hybrid materials could be a promising luminescent probe for selectively sensing Fe3+ ion.展开更多
基金Project supported by the National Natural Science Foundation of China(21161023,21661034)
文摘Photoluminescent hybrid materials containing carboxymethyl cellulose and lanthanide ions(Eu3+, Tb3+)were prepared by a facile method under ambient conditions. Lanthanide ions were covalently grafted to the cellulose framework through coordination with the carboxylic groups of the cellulose. Hybrid materials were fabricated as hydrogel and aerogel. As shown by SEM and pore parameters, aerogel materials which were obtained by supercritical CO2 drying show hierarchical porous structure. The photoluminescence spectrum of the hybrid materials shows the characteristic red emission of Eu3+ ion and green emission of Tb3+. Further luminescent investigations reveal that these hybrid materials can detect Fe3+ with relative selectivity and high sensitivity, which suggests that the hybrid materials could be a promising luminescent probe for selectively sensing Fe3+ ion.