期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Simultaneous Determination of Ultraviolet Absorbers and Antibacterial Agents in Textiles by Ultra-High Performance Liquid Chromatography/Orbitrap High Resolution Mass Spectrometry 被引量:1
1
作者 Chengyun Wang Tangtang Xie +2 位作者 Rong Xu junfeng lin Lixia Li 《World Journal of Engineering and Technology》 2017年第1期1-18,共18页
This paper reported a new analytical method for the simultaneous determination of seven benzotriazole ultraviolet absorbers and seven antibacterial agents in textiles. After ultrasonic extraction for the textile sampl... This paper reported a new analytical method for the simultaneous determination of seven benzotriazole ultraviolet absorbers and seven antibacterial agents in textiles. After ultrasonic extraction for the textile samples in methanol, the solutions were analyzed by ultra-high performance liquid chromotagraphy/orbitrap high resolution mass spectrometry (UPLC/Orbitrap HRMS). It showed that a good chromatographic separation for these target compounds was achieved by a Hypersil GOLD column (100 mm × 2.1 mm × 1.9 μm) with a gradient elution of methanol and 0.1% aqueous formic acid solution (containing 0.5 mmol/L ammonium acetate). Triclosan and 4-chloro-3,5-dimethyl phenol (PCMX) were detected by the orbitrap HRMS in an electrospray ionization (ESI) negative mode while the other twelve target compounds were detected by orbitrap HRMS in ESI positive mode. Full scan experiment was performed over the range from m/z 100 to m/z 500. These target compounds were routinely detected with mass accuracy below 2 × 10-6 (2 ppm) at the optimized conditions. The results showed that the limits of detection (LODs) were in the range from 0.1 to 0.3 μg/kg. The blank samples were spiked at three levels and their average recoveries varied from 80.5% to 96.3% while the relative standard deviation (RSD) changed from 3.2% to 9.9%. The present method was also applied for the determination of those ultraviolet absorbers and antibacterial agents in the commercial textiles. 展开更多
关键词 Ultra-High Performance Liquid Chromatography/Orbitrap High Resolution Mass Spectrometry Benzotriazoleultraviolet ABSORBERS Isothiazolinone Tric-losan 4-Chloro-3 5-Dimethyl Phenol
下载PDF
Determination of Residual Chlorothalonil in Textiles
2
作者 Chengyun Wang junfeng lin +2 位作者 Tangtang Xie Huiping Zou Yalei Shen 《Journal of Materials Science and Chemical Engineering》 2020年第4期106-114,共9页
An effective method was established to determine the content of residual chlorothalonil in textiles by gas chromatography/mass spectrometry-selected ion monitoring coupled with ultrasonic extraction technique. Residua... An effective method was established to determine the content of residual chlorothalonil in textiles by gas chromatography/mass spectrometry-selected ion monitoring coupled with ultrasonic extraction technique. Residual chlorothalonil in textiles was ultrasonically extracted using ethyl acetate as the extraction solvent. The extract was condensed and analyzed by gas chromatography/mass spectrometry in selected ion monitoring mode (GC/MS-SIM). The concentration of chlorothalonil was calibrated by the external standard method. Good linearity existed between the peak area and the mass concentration of chlorothalonil in the mass concentration range from 0.2 μg/mL to 42.8 μg/mL. The equation was A = 95,399ρ ? 50,848, with a correlation coefficient of 0.9999. The limit of detection was 0.1 mg/kg for chlorothalonil. The blank samples were spiked at three concentration levels, and the spiked average recoveries changed from 81.9% to 95.4% while the relative standard deviation (RSD) changed from 1.8% to 5.2%. The proposed method was simple, rapid, sensitive and the limit of detection could meet the limit requirements of relevant regulations. Commercially available textiles were measured by this method, and chlorothalonil at different concentration levels was detected in some samples. 展开更多
关键词 CHLOROTHALONIL TEXTILE ULTRASONIC EXTRACTION GC/MS-SIM
下载PDF
Effects of coal molecular structure and pore morphology on methane adsorption and accumulation mechanism
3
作者 Jingshuo ZHANG Xiaoming NI +1 位作者 Ying HAN junfeng lin 《Frontiers of Earth Science》 SCIE CSCD 2023年第1期262-272,共11页
The adsorption,diffusion,and aggregation of methane from coal are often studied based on slit or carbon nanotube models and isothermal adsorption and thermodynamics theories.However,the pore morphology of the slit mod... The adsorption,diffusion,and aggregation of methane from coal are often studied based on slit or carbon nanotube models and isothermal adsorption and thermodynamics theories.However,the pore morphology of the slit model involves a single slit,and the carbon nanotube model does not consider the molecular structure of coal.The difference of the adsorption capacity of coal to methane was determined without considering the external environmental conditions by the molecular structure and pore morphology of coal.The study of methane adsorption by coal under single condition cannot reveal its mechanism.In view of this,elemental analysis,FTIR spectrum,XPS electron energy spectrum,13C NMR,and isothermal adsorption tests were conducted on the semi-anthracite of Changping mine and the anthracite of Sihe Mine in Shanxi Province,China.The grand canonical Monte Carlo(GCMC)and molecular dynamics simulation method was used to establish the coal molecular structure model.By comparing the results with the experimental test results,the accuracy and practicability of the molecular structure model are confirmed.Based on the adsorption potential energy theory and aggregation model,the adsorption force of methane on aromatic ring structure,pyrrole nitrogen structure,aliphatic structure,and oxygen-containing functional group was calculated.The relationship between pore morphology,methane aggregation morphology,and coal molecular structure was revealed.The results show that the adsorption force of coal molecular structure on methane is as follows:aromatic ring structure(1.96 kcal/mol)>pyridine nitrogen(1.41 kcal/mol)>pyrrorole nitrogen(1.05 kcal/mol)>aliphatic structure(0.29 kcal/mol)>oxygen-containing functional group(0.20 kcal/mol).In the long and narrow regular pores of semi-anthracite and anthracite,methane aggregates in clusters at turns and aperture changes,and the adsorption and aggregation positions are mainly determined by the aromatic ring structure,the positions of pyrrole nitrogen and pyridine nitrogen.The degree of aggregation is controlled by the interaction energy and pore morphology.The results pertaining to coal molecular structure and pore morphology on methane adsorption and aggregation location and degree are conducive to the evaluation of the adsorption mechanism of methane in coal. 展开更多
关键词 Grand Canonical Monte Carlo pore morphology methane adsorption molecular structure of coal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部