期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin–orbit coupling
1
作者 王莹 李丹 +6 位作者 孙新英 张惠晴 马晗 李慧欣 任俊峰 王传奎 胡贵超 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期519-527,共9页
With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. Th... With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. The role of lattice distortion induced by the strong electron–lattice interaction in organics is clarified in contrast with a uniform chain. The results demonstrate an enhanced SOC effect on the spin admixture of frontier eigenstates by the lattice distortion at a larger SOC,which is explained by the perturbation theory. The quantum transport under the SOC is calculated for both nonmagnetic and ferromagnetic electrodes. A more notable SOC effect on total transmission and current is observed for ferromagnetic electrodes, where spin filtering induced by spin-flipped transmission and suppression of magnetoresistance are obtained.Unlike the spin admixture, a stronger SOC effect on transmission exists for the uniform chain rather than the organic lattices with distortion. The reason is attributed to the modified spin-polarized conducting states in the electrodes by lattice configuration, and hence the spin-flip transmission, instead of the spin admixture of eigenstates. This work is helpful to understand the SOC effect in organic spin valves in the presence of lattice distortion. 展开更多
关键词 organic spintronics spin–orbit coupling spin admixture quantum transport
下载PDF
High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery 被引量:1
2
作者 Jiaxu Li junfeng ren +4 位作者 Caixia Li Pengxian Li Tingting Wu Shiwei Liu Lei Wang 《Nano Research》 SCIE EI CSCD 2022年第8期7190-7198,共9页
To conquer severe dendrites formation and side reactions of zinc metal anodes,which are serious obstacles for the practical applications of aqueous zinc ion battery(ZIB),herein,we develop a sodium allysulfonate(SAS)an... To conquer severe dendrites formation and side reactions of zinc metal anodes,which are serious obstacles for the practical applications of aqueous zinc ion battery(ZIB),herein,we develop a sodium allysulfonate(SAS)and acrylamide(AM)copolymer by radical polymerization process(crosslinking of C=C)as solid-state electrolyte.The interface kinetics is improved remarkably due to the high adhesion and excellent ion transferability of AM-SAS(AS)copolymers.Especially the sulfonic acid group in the hydrogel electrolyte can enhance the internal ionic conductivity effectively benefiting from its high affinity to Zn^(2+).Also,polymer chains realize re-regulation to Zn^(2+)flow in atomic-scale,thus leading to controllable deposition of Zn onto the dendrite-free Zn anodes.Consequently,the AS-1.5 electrolyte achieves ultra-stable Zn deposition/stripping behaviors with the lifespan over 1,000 h via the suppression of side-reactions and paralleled Zn deposition.High performances of Zn/Mn-doped V_(2)O_(5)(MnVO)(over 500 cycles)and Zn/diquinoxalino[2,3-a:2',3'-c]phenazine(HATN)(over 2,500 cycles)full cells demonstrate that the AS hydrogel electrolyte is a common approach for ZIBs under various conditions.This molecular regulation engineering opens a novel route for hydrogel electrolyte fabrication,where sulfonic groups perform as media of Zn^(2+)transfer.Therefore,high bulk ionic conductivity as well as excellent interface ion diffusion ability is obtained. 展开更多
关键词 COPOLYMER ADHESION ionic conductivity dendrite-free interface kinetics
原文传递
Paleogeomorphy evolution of the Ordovician weathering crust and its implication for reservoir development,eastern Ordos Basin 被引量:3
3
作者 Xinshan Wei junfeng ren +4 位作者 Junxing Zhao Daofeng Zhang Shunshe Luo Liubin Wei Juanping Chen 《Petroleum Research》 2018年第1期77-89,共13页
Gas reservoir development of the Ordovician weathering crust in the Ordos Basin is closely controlled by the pre-Carboniferous paleogeomorphy.Previous studies show that the paleogeomorphy is high in the west and low i... Gas reservoir development of the Ordovician weathering crust in the Ordos Basin is closely controlled by the pre-Carboniferous paleogeomorphy.Previous studies show that the paleogeomorphy is high in the west and low in the east,and the karst highland,karst slope and karst basin are developed from west to east.With further exploration in recent years,many karst breccia that represent strong karstification,are found in the east area which previously is considered to be the Ordovician karst basin.Thus,it is necessary to revaluate controlling factors of karst paleogeomorphy development from a viewpoint of the dynamic paleogeomorphy evolution,to investigate the paleogeomorphy evolution of the Ordovician weathering crust in geological history and guide further research and prediction of development law of reservoir spaces.In order to reconstruct the paleogeomorphy of the weathering crust in the top of Ordovician in the east Ordos Basin,paleogeography,thickness of residual strata and paleokarst characteristics are well studied.The result shows that a wide range of paleokarst highland occurred in the central to east part of Ordos Basin in the early period,and the karst reservoir spaces were formed;but in the late period,the east part of the basin gradually evolved into the paleokarst basin,the current pre-Carboniferous paleogeomorphy was thus formed,and the dissolution reservoir spaces formed in the early period were mostly filled,accordingly the reservoirs were tight.However fracture networks formed by cave collapse connect intercrystalline pores of dolomite,therefore,the reservoirs can still be well preserved locally and are worthy targets for hydrocarbon exploration. 展开更多
关键词 The Ordovician weathering crust Paleogeomorphy Karst highland Karst slope Karst basin Karst reservoir Majiagou Formation The eastern Ordos Basin
原文传递
An Advanced Design Concept of Mansion-like Freestanding Silicon Anodes with Improved Lithium Storage Performances
4
作者 Deqing Zhang junfeng ren +3 位作者 Caixia Li Bin Luo Lei Wang Yanyan Li 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第5期55-62,共8页
To conquer inherently low conductivity,volume swelling,and labile solid electrolyte interphase(SEI)films of Si anode in lithium ion battery(LIBs),it is widely accepted that appropriate structure design of Si-C hybrids... To conquer inherently low conductivity,volume swelling,and labile solid electrolyte interphase(SEI)films of Si anode in lithium ion battery(LIBs),it is widely accepted that appropriate structure design of Si-C hybrids performs effectively,especially for nanosize Si particles.Herein,inspired by the sturdy construction of high-rise buildings,a mansion-like 3D structured Si@SiO_(2)/PBC/RGO(SSPBG)with separated rooms is developed based on 0D core-shell Si@SiO_(2),1D pyrolytic bacterial cellulose(PBC)and 2D reduced graphene oxide(RGO).Therefore,these hierarchical protectors operate synergistically to inhibit the inevitable volume changes during electrochemical process.Specifically,tightly coated SiO_(2)shell as the first protective layer could buffer the volume expansion and reduce detrimental pulverization of Si NPs.Furthermore,flexible spring-like PBC and ultra-fine RGO sheets perform as securer barriers and skeleton which will counteract the microstructure strain and accelerate electron transfer at the same time.Remarkably,the self-supporting electrode realizes a distinguished performance of 901 mAh g^(-1)at 2 A g^(-1)for 500 cycles.When matched with LiFePO4 cathodes,high stability of more than 100 cycles has been realized for the full batteries. 展开更多
关键词 Si anode bacterial cellulose graphene 3D conductive network binder-free lithium-ion battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部