Background Image matching is crucial in numerous computer vision tasks such as 3D reconstruction and simultaneous visual localization and mapping.The accuracy of the matching significantly impacted subsequent studies....Background Image matching is crucial in numerous computer vision tasks such as 3D reconstruction and simultaneous visual localization and mapping.The accuracy of the matching significantly impacted subsequent studies.Because of their local similarity,when image pairs contain comparable patterns but feature pairs are positioned differently,incorrect recognition can occur as global motion consistency is disregarded.Methods This study proposes an image-matching filtering algorithm based on global motion consistency.It can be used as a subsequent matching filter for the initial matching results generated by other matching algorithms based on the principle of motion smoothness.A particular matching algorithm can first be used to perform the initial matching;then,the rotation and movement information of the global feature vectors are combined to effectively identify outlier matches.The principle is that if the matching result is accurate,the feature vectors formed by any matched point should have similar rotation angles and moving distances.Thus,global motion direction and global motion distance consistencies were used to reject outliers caused by similar patterns in different locations.Results Four datasets were used to test the effectiveness of the proposed method.Three datasets with similar patterns in different locations were used to test the results for similar images that could easily be incorrectly matched by other algorithms,and one commonly used dataset was used to test the results for the general image-matching problem.The experimental results suggest that the proposed method is more accurate than other state-of-the-art algorithms in identifying mismatches in the initial matching set.Conclusions The proposed outlier rejection matching method can significantly improve the matching accuracy for similar images with locally similar feature pairs in different locations and can provide more accurate matching results for subsequent computer vision tasks.展开更多
With continuous advancements in artificial intelligence(AI), automatic piano-playing robots have become subjects of cross-disciplinary interest. However, in most studies, these robots served merely as objects of obser...With continuous advancements in artificial intelligence(AI), automatic piano-playing robots have become subjects of cross-disciplinary interest. However, in most studies, these robots served merely as objects of observation with limited user engagement or interaction. To address this issue, we propose a user-friendly and innovative interaction system based on the principles of greedy algorithms. This system features three modules: score management, performance control, and keyboard interactions. Upon importing a custom score or playing a note via an external device, the system performs on a virtual piano in line with user inputs. This system has been successfully integrated into our dexterous manipulator-based piano-playing device, which significantly enhances user interactions.展开更多
Purpose – In the process of robot shell design, it is necessary to match the shape of the input 3D originalcharacter mesh model and robot endoskeleton, in order to make the input model fit for robot and avoidcollisio...Purpose – In the process of robot shell design, it is necessary to match the shape of the input 3D originalcharacter mesh model and robot endoskeleton, in order to make the input model fit for robot and avoidcollision. So, the purpose of this paper is to find an object of reference, which can be used for the process ofshape matching.Design/methodology/approach – In this work, the authors propose an interior bounded box (IBB)approach that derives from oriented bounding box (OBB). This kind of box is inside the closed mesh model.At the same time, it has maximum volume which is aligned with the object axis but is enclosed by all the meshvertices. Based on the IBB of input mesh model and the OBB of robot endoskeleton, the authors can completethe process of shape matching. In this paper, the authors use an evolutionary algorithm, covariance matrixadaptation evolution strategy (CMA-ES), to approximate the IBB based on skeleton and symmetry of inputcharacter mesh model.Findings – Based on the evolutionary algorithm CMA-ES, the optimal position and scale informationof IBB can be found. The authors can obtain satisfactory IBB result after this optimization process.The output IBB has maximum volume and is enveloped by the input character mesh model as well.Originality/value – To the best knowledge of the authors, the IBB is first proposed and used in the field ofrobot shell design. Taking advantage of the IBB, people can quickly obtain a shell model that fit for robot.At the same time, it can avoid collision between shell model and the robot endoskeleton.展开更多
基金Supported by the Natural Science Foundation of China(62072388,62276146)the Industry Guidance Project Foundation of Science technology Bureau of Fujian province(2020H0047)+2 种基金the Natural Science Foundation of Science Technology Bureau of Fujian province(2019J01601)the Creation Fund project of Science Technology Bureau of Fujian province(JAT190596)Putian University Research Project(2022034)。
文摘Background Image matching is crucial in numerous computer vision tasks such as 3D reconstruction and simultaneous visual localization and mapping.The accuracy of the matching significantly impacted subsequent studies.Because of their local similarity,when image pairs contain comparable patterns but feature pairs are positioned differently,incorrect recognition can occur as global motion consistency is disregarded.Methods This study proposes an image-matching filtering algorithm based on global motion consistency.It can be used as a subsequent matching filter for the initial matching results generated by other matching algorithms based on the principle of motion smoothness.A particular matching algorithm can first be used to perform the initial matching;then,the rotation and movement information of the global feature vectors are combined to effectively identify outlier matches.The principle is that if the matching result is accurate,the feature vectors formed by any matched point should have similar rotation angles and moving distances.Thus,global motion direction and global motion distance consistencies were used to reject outliers caused by similar patterns in different locations.Results Four datasets were used to test the effectiveness of the proposed method.Three datasets with similar patterns in different locations were used to test the results for similar images that could easily be incorrectly matched by other algorithms,and one commonly used dataset was used to test the results for the general image-matching problem.The experimental results suggest that the proposed method is more accurate than other state-of-the-art algorithms in identifying mismatches in the initial matching set.Conclusions The proposed outlier rejection matching method can significantly improve the matching accuracy for similar images with locally similar feature pairs in different locations and can provide more accurate matching results for subsequent computer vision tasks.
基金Supported by the Natural Science Foundation of China(62072388)Public Technology Service Platform Project of Xiamen City(3502Z20231043)Fujian Sunshine Charity Foundation.
文摘With continuous advancements in artificial intelligence(AI), automatic piano-playing robots have become subjects of cross-disciplinary interest. However, in most studies, these robots served merely as objects of observation with limited user engagement or interaction. To address this issue, we propose a user-friendly and innovative interaction system based on the principles of greedy algorithms. This system features three modules: score management, performance control, and keyboard interactions. Upon importing a custom score or playing a note via an external device, the system performs on a virtual piano in line with user inputs. This system has been successfully integrated into our dexterous manipulator-based piano-playing device, which significantly enhances user interactions.
基金This research,which is carried out at BeingThere Centre,collaboration among IMI of Nanyang Technological University(NTU)Singapore,ETH Zurich and UNC Chapel Hill,is supported by the Singapore National Research Foundation(NRF)under its International Research Centre@Singapore Funding Initiative and administered by the Interactive Digital Media Programme Office(IDMPO).The author Shihui Guo is supported by Chinese Post-doctoral Science Foundation 2016M600506.
文摘Purpose – In the process of robot shell design, it is necessary to match the shape of the input 3D originalcharacter mesh model and robot endoskeleton, in order to make the input model fit for robot and avoidcollision. So, the purpose of this paper is to find an object of reference, which can be used for the process ofshape matching.Design/methodology/approach – In this work, the authors propose an interior bounded box (IBB)approach that derives from oriented bounding box (OBB). This kind of box is inside the closed mesh model.At the same time, it has maximum volume which is aligned with the object axis but is enclosed by all the meshvertices. Based on the IBB of input mesh model and the OBB of robot endoskeleton, the authors can completethe process of shape matching. In this paper, the authors use an evolutionary algorithm, covariance matrixadaptation evolution strategy (CMA-ES), to approximate the IBB based on skeleton and symmetry of inputcharacter mesh model.Findings – Based on the evolutionary algorithm CMA-ES, the optimal position and scale informationof IBB can be found. The authors can obtain satisfactory IBB result after this optimization process.The output IBB has maximum volume and is enveloped by the input character mesh model as well.Originality/value – To the best knowledge of the authors, the IBB is first proposed and used in the field ofrobot shell design. Taking advantage of the IBB, people can quickly obtain a shell model that fit for robot.At the same time, it can avoid collision between shell model and the robot endoskeleton.