期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of silicon carbide-based iron catalyst on reactor optimization for non-oxidative direct conversion of methane
1
作者 Eun-hae Sim Sung Woo Lee +6 位作者 Jin Ju Lee Seung Ju Han jung ho shin Gracia Lee Sungrok Ko Kwan-Young Lee Yong Tae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期519-532,I0012,共15页
The conversion of methane to olefins,aromatics,and hydrogen(MTOAH)can be used to stably obtain hydrocarbons when the effect of the catalytic surface is optimized from the reaction engineering perspective.In this study... The conversion of methane to olefins,aromatics,and hydrogen(MTOAH)can be used to stably obtain hydrocarbons when the effect of the catalytic surface is optimized from the reaction engineering perspective.In this study,Fe/Si C catalysts were packed into a quartz tube reactor.The catalytic surfaces of Si C and the impregnated Fe species decreased the apparent activation energies(E_a)of methane consumption in the blank reactor between 965 and 1020℃.Consequently,the hydrocarbon yield increased by 2.4times at 1020℃.Based on the model reactions of ethane,ethylene,and acetylene mixed with hydrogen in the range of 500-1020℃,an excess amount of Fe in the reactor favored the C-C coupling reaction over the selective hydrogenation of acetylene;consequently,coke formation was favored over the hydrogenation reaction.The gas-phase reactions and catalyst properties were optimized to increase hydrocarbon yields while reducing coke selectivity.The 0.2Fe catalyst-packed reactor(0.26 wt%Fe)resulted in a hydrocarbon yield of 7.1%and a coke selectivity of<2%when the ratio of the void space of the postcatalyst zone to the catalyst space was adjusted to be≥2.Based on these findings,the facile approach of decoupling the reaction zone between the catalyst surface and the gas-phase reaction can provide insights into catalytic reactor design,thereby facilitating the scale-up from the laboratory to the commercial scale. 展开更多
关键词 Non-oxidative methane conversion Ethylene AROMATIC Methane pyrolysis Fe/SiC Coke resistance Catalytic reactor
下载PDF
Microstructure evolution and mechanical properties of Ti-B-N coatings deposited by plasma-enhanced chemical vapor deposition 被引量:13
2
作者 jung ho shin Kwang Soo ChoI +2 位作者 Tie-gang WANG Kwang ho KIM Roman NOWAK 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期722-728,共7页
Ternary Ti-B-N coatings were synthesized on AISI 304 and Si wafer by plasma-enhanced chemical vapor deposition (PECVD) technique using a gaseous mixture of TiCl4,BCl3,H2,N2,and Ar.By virtue of X-ray diffraction analys... Ternary Ti-B-N coatings were synthesized on AISI 304 and Si wafer by plasma-enhanced chemical vapor deposition (PECVD) technique using a gaseous mixture of TiCl4,BCl3,H2,N2,and Ar.By virtue of X-ray diffraction analysis,X-ray photoelectron spectroscopy,scanning electron microscope,and high-resolution transmission electron microscope,the influences of B content on the microstructure and properties of Ti B N coatings were investigated systematically.The results indicated that the microstructure and mechanical properties of Ti-B-N coatings largely depend on the transformation from FCC-TiN phase to HCP-TiB2 phase.With increasing B content and decreasing N content in the coatings,the coating microstructure evolves gradually from FCC-TiN/a-BN to HCP-TiB2 /a-BN via FCC-TiN+HCP-TiB2/a-BN.The highest microhardness of about 34 GPa is achieved,which corresponds to the nanocomposite Ti-63%B-N (mole fraction) coating consisting of the HCP-TiB2 nano-crystallites and amorphous BN phase.The lowest friction-coefficient was observed for the nanocomposite Ti-41%B-N (mole fraction) coating consisting of the FCC-TiN nanocrystallites and amorphous BN 展开更多
关键词 Ti-B-N COATING plasma-enhanced chemical vapor deposition (PECVD) nanocomposite COATING hardness friction coefficient
下载PDF
Synthesis and properties of Cr-Al-Si-N films deposited by hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and DC pulse sputtering 被引量:12
3
作者 Min Su KANG Tie-gang WANG +2 位作者 jung ho shin Roman NOWAK Kwang ho KIM 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期729-734,共6页
The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under... The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C. 展开更多
关键词 Cr-Al-Si-N film high power IMPULSE MAGNETRON SPUTTERING DC pulsed SPUTTERING high-temperature oxidation resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部