This study addresses the issue of ship accidental grounding as an impact phenomenon,with the assumption that an interaction of its structure with the oceanic seabed(obstruction),idealized as rock topology,is capable o...This study addresses the issue of ship accidental grounding as an impact phenomenon,with the assumption that an interaction of its structure with the oceanic seabed(obstruction),idealized as rock topology,is capable of initiating a so-called hard ground scenario.This occurrence variation was considered by performing two main instances,encompassing raking and stranding,often experienced by oil/chemical tankers as thin-walled structures.In addition,a failure criterion was implemented on the structural geometry,in order to define its ultimate limit and possible damage,during interaction with the obstructions.Subsequently,the analysis results were compiled to assess structural crashworthiness as well as progressive failure of the double bottom part of the tanker,where energy criterion indicated the raking to be more destructive.Meanwhile,detailed observation of the failure sequence indicated the stranding to have successfully breached the inner bottom shell.展开更多
Marine accidents have caused immense casualties on various parties in shipping and shipbuilding industries, including financial and structural losses. This situation makes ship accident becomes a critical subject in n...Marine accidents have caused immense casualties on various parties in shipping and shipbuilding industries, including financial and structural losses. This situation makes ship accident becomes a critical subject in naval architecture and marine structures, as it needs continuous assessment and investigation to broaden insight and data of collision and grounding phenomena. The paper aims to investigate structural conditions of a ship arranged by double hull system under accidental scenario, namely ship grounding. Fundamental concept of structure-rock interaction in poweredhard grounding is adopted to design impact configuration for calculation using finite element(FE)simulation. Involved entities are defined as the structure represented by tanker vessel, and oceanic rock is deployed as the indenter in analysis. Calculation results indicate that the crashworthiness capability of structural part strengthened by longitudinal girder is higher than other selected locations on the structures against rock penetration. Localized flooding of storage oil may occur during raking damage is formed on structural part between two girders.展开更多
The main goal of this study was to investigate the effects of selected ship collision parameter values on the characteristics of the absorbed energy in several ship collision scenarios. Non-linear simulations were per...The main goal of this study was to investigate the effects of selected ship collision parameter values on the characteristics of the absorbed energy in several ship collision scenarios. Non-linear simulations were performed using a finite element method (FEM) to obtain virtual experiment data. In the present research, the size of the side damage from a collision phenomenon were measured and used to verify the numerical configuration together with the calculation results using an empirical equation. Parameters in the external dynamics of a ship collision such as the location of the contact point and velocity of the striking ship were taken into consideration. The internal energy and deformation size on the side structure were discussed further in a comparative study. The effects of the selected parameters on several structural behaviors, namely energy, force, and damage extent were also observed and evaluated in this section. Stiffener on side hull was found to contribute significantly into resistance capability of the target ship against penetration of the striking bow. Remarkable force during penetration was observed to occur when inner shell was crushed as certain velocity was applied in the striking bow.展开更多
This paper focusses on steel-welded hemispherical shells subjected to external hydrostatic pressure.The experimental and numerical investigations were performed to study their failure behaviour.The model was fabricate...This paper focusses on steel-welded hemispherical shells subjected to external hydrostatic pressure.The experimental and numerical investigations were performed to study their failure behaviour.The model was fabricated from mild steel and made through press forming and welding.We therefore considered the effect of initial shape imperfection,variation of thickness and residual stress obtained from the actual structures.Four hemisphere models designed with R/t from 50 to 130 were tested until failure.Prior to the test,the actual geometric imperfection and shell thickness were carefully measured.The comparisons of available design codes(PD 5500,ABS,DNV-GL)in calculating the collapse pressure were also highlighted against the available published test data on steel-welded hemispheres.Furthermore,the nonlinear FE simulations were also conducted to substantiate the ultimate load capacity and plastic deformation of the models that were tested.Parametric dependence of the level of sphericity,varying thickness and residual welding stresses were also numerically considered in the benchmark studies.The structure behaviour from the experiments was used to verify the numerical analysis.In this work,both collapse pressure and failure mode in the numerical model were consistent with the experimental model.展开更多
This work presents results of numerical analyses with focus on structural performance accounting for seabed topology,and investigation of energy formulae for application in calculation of grounding damage.Study in thi...This work presents results of numerical analyses with focus on structural performance accounting for seabed topology,and investigation of energy formulae for application in calculation of grounding damage.Study in this work is divided into three stages,i.e.finite element method(FEM)verification using laboratory experiment,numerical calculation of ship grounding using FEM,and comparison of the FEM results with empirical formulae of damage-energy calculation.Fundamental formula of Minorsky is considered with other improvement expression,such as Woisin and Zhang.Investigation suggested that the recent-developed expression produces the closest estimation to the verified FEM results.On the other hand,fundamental formulae of Minorsky is the farthest compared to the FEM,which indicates constant value in the expression needs to be more specific as improved in the Woisin formula.展开更多
文摘This study addresses the issue of ship accidental grounding as an impact phenomenon,with the assumption that an interaction of its structure with the oceanic seabed(obstruction),idealized as rock topology,is capable of initiating a so-called hard ground scenario.This occurrence variation was considered by performing two main instances,encompassing raking and stranding,often experienced by oil/chemical tankers as thin-walled structures.In addition,a failure criterion was implemented on the structural geometry,in order to define its ultimate limit and possible damage,during interaction with the obstructions.Subsequently,the analysis results were compiled to assess structural crashworthiness as well as progressive failure of the double bottom part of the tanker,where energy criterion indicated the raking to be more destructive.Meanwhile,detailed observation of the failure sequence indicated the stranding to have successfully breached the inner bottom shell.
文摘Marine accidents have caused immense casualties on various parties in shipping and shipbuilding industries, including financial and structural losses. This situation makes ship accident becomes a critical subject in naval architecture and marine structures, as it needs continuous assessment and investigation to broaden insight and data of collision and grounding phenomena. The paper aims to investigate structural conditions of a ship arranged by double hull system under accidental scenario, namely ship grounding. Fundamental concept of structure-rock interaction in poweredhard grounding is adopted to design impact configuration for calculation using finite element(FE)simulation. Involved entities are defined as the structure represented by tanker vessel, and oceanic rock is deployed as the indenter in analysis. Calculation results indicate that the crashworthiness capability of structural part strengthened by longitudinal girder is higher than other selected locations on the structures against rock penetration. Localized flooding of storage oil may occur during raking damage is formed on structural part between two girders.
文摘The main goal of this study was to investigate the effects of selected ship collision parameter values on the characteristics of the absorbed energy in several ship collision scenarios. Non-linear simulations were performed using a finite element method (FEM) to obtain virtual experiment data. In the present research, the size of the side damage from a collision phenomenon were measured and used to verify the numerical configuration together with the calculation results using an empirical equation. Parameters in the external dynamics of a ship collision such as the location of the contact point and velocity of the striking ship were taken into consideration. The internal energy and deformation size on the side structure were discussed further in a comparative study. The effects of the selected parameters on several structural behaviors, namely energy, force, and damage extent were also observed and evaluated in this section. Stiffener on side hull was found to contribute significantly into resistance capability of the target ship against penetration of the striking bow. Remarkable force during penetration was observed to occur when inner shell was crushed as certain velocity was applied in the striking bow.
基金The corresponding author would like to acknowledge the Research Grant of Pukyong National University(2019).
文摘This paper focusses on steel-welded hemispherical shells subjected to external hydrostatic pressure.The experimental and numerical investigations were performed to study their failure behaviour.The model was fabricated from mild steel and made through press forming and welding.We therefore considered the effect of initial shape imperfection,variation of thickness and residual stress obtained from the actual structures.Four hemisphere models designed with R/t from 50 to 130 were tested until failure.Prior to the test,the actual geometric imperfection and shell thickness were carefully measured.The comparisons of available design codes(PD 5500,ABS,DNV-GL)in calculating the collapse pressure were also highlighted against the available published test data on steel-welded hemispheres.Furthermore,the nonlinear FE simulations were also conducted to substantiate the ultimate load capacity and plastic deformation of the models that were tested.Parametric dependence of the level of sphericity,varying thickness and residual welding stresses were also numerically considered in the benchmark studies.The structure behaviour from the experiments was used to verify the numerical analysis.In this work,both collapse pressure and failure mode in the numerical model were consistent with the experimental model.
文摘This work presents results of numerical analyses with focus on structural performance accounting for seabed topology,and investigation of energy formulae for application in calculation of grounding damage.Study in this work is divided into three stages,i.e.finite element method(FEM)verification using laboratory experiment,numerical calculation of ship grounding using FEM,and comparison of the FEM results with empirical formulae of damage-energy calculation.Fundamental formula of Minorsky is considered with other improvement expression,such as Woisin and Zhang.Investigation suggested that the recent-developed expression produces the closest estimation to the verified FEM results.On the other hand,fundamental formulae of Minorsky is the farthest compared to the FEM,which indicates constant value in the expression needs to be more specific as improved in the Woisin formula.