An in-depth investigation into the effect of embedment in global value chain(GVC)on energy conservation and emissions reduction is of great significance for scientifically assessing the environmental impact of GVC par...An in-depth investigation into the effect of embedment in global value chain(GVC)on energy conservation and emissions reduction is of great significance for scientifically assessing the environmental impact of GVC participation,and promoting high-quality development in China.This paper incorporates GVC embedment,energy consumption and carbon emissions into the same analysis framework for the first time.Based on the WIOD database,this paper theoretically and empirically examines the impact and mechanism of global value chain embeddedness on carbon emission reduction from two dimensions:energy consumption intensity and energy consumption structure.The study found that GVC embedment significantly reduced the industry’s carbon emission intensity;developing economies’embedment in GVC helped reduce their carbon emission intensity,while the effect was not obvious in developed economies.GVC embedment had a significant inhibitory effect on the carbon emissions in both upstream and downstream industries,but not conducive to carbon reduction of lowtech manufacturing.The mechanism test shows that the GVC embedment not only exhibits the dual effects of energy conservation and emissions reduction,but also has a significant impact on carbon emissions by reducing the energy consumption intensity and improving the energy consumption structure.展开更多
Salinity stress is one of the critical environmental drivers of soil organic matter(SOM)decomposition in coastal ecosystems.Although the temperature sensitivity(Q_(10))of SOM decomposition has been widely applied in E...Salinity stress is one of the critical environmental drivers of soil organic matter(SOM)decomposition in coastal ecosystems.Although the temperature sensitivity(Q_(10))of SOM decomposition has been widely applied in Earth system models to forecast carbon processes,the impact of salinity on SOM decomposition by restructuring microbial communities remains uncovered.Here,we conducted a microcosm experiment with soils collected from the coastal salt marsh in the Yellow River Estuary,which is subjected to strong dynamics of salinity due to both tidal flooding and drainage.By setting a gradient of salt solutions,soil salinity was adjusted to simulate salinity stress and soil carbon emission(CO_(2))rate was measured over the period.Results showed that as salinity increased,the estimated decomposition constants based on first-order kinetics gradually decreased at different temperatures.Below the 20‰salinity treatments,which doubled the soil salinity,Q_(10)increased with increasing salinity;but higher salinity constrained the temperature-related response of SOM decomposition by inhibiting microbial growth and carbon metabolisms.Soil bacteria were more sensitive to salinity stress than fungi,which can be inferred from the response of microbial beta-diversity to changing salinity.Among them,the phylotypes assigned to Gammaproteobacteria and Bacilli showed higher salt tolerance,whereas taxa affiliated with Alphaproteobacteria and Bacteroidota were more easily inhibited by the salinity stress.Several fungal taxa belonging to Ascomycota had higher adaptability to the stress.As the substrate was consumed with the incubation,bacterial competition intensified,but the fungal co-occurrence pattern changed weakly during decomposition.Collectively,these findings revealed the threshold effect of salinity on SOM decomposition in coastal salt marshes and emphasized that salt stress plays a key role in carbon sequestration by regulating microbial keystone taxa,metabolisms,and interactions.展开更多
By constructing a yardstick competition model of the performance equation,this paper analyzes the internal mechanism of local governments'competition of science and technology(S&T)expenditure in China.By using...By constructing a yardstick competition model of the performance equation,this paper analyzes the internal mechanism of local governments'competition of science and technology(S&T)expenditure in China.By using the Dynamic Spatial Panel Model,we analyze the competition empirically from five dimensions:geographical adjacency,geographical distance,administrative adjacency,administrative grade and economic distance.According to the results,the local governments'S&T expenditure showed a significant strategic competition phenomenon,that is,there is a“competition for innovation”,and the competition is more obvious between regions with close geographical proximity and administrative relations.“Competition for innovation”will be affected by political exogenous shocks such as those from the National People's Congress(NPC)of China;There is a“father-son competition”relationship between the superior and inferior governments.At last,the competition can promote the regional innovation significantly,which shows that“competition for innovation”is a kind of top-by-top competition.The conclusions may provide some useful suggestions for optimizing the relationship between local governments and promoting the construction of an innovative country.展开更多
Based on the interpretation and vector processing of remote sensing images in 1985 and 2000, the spatial changes of wetland landscape patterns in Dadu River catchment in the last two decades were studied using spatial...Based on the interpretation and vector processing of remote sensing images in 1985 and 2000, the spatial changes of wetland landscape patterns in Dadu River catchment in the last two decades were studied using spatial analysis method. Supported by Apack soft-ware, the indices of wetland landscape pattern were calculated, and the information entropy (IE) was also introduced to show the changes of wetland landscape information. Results showed that wetland landscape in this region was characteristic of patch-corridor-matrix configuration and dominantly consisted of natural wetlands. Landscape patterns changed a little with low fragment and showed concentrated distribution with partial scattered distribution during the period from 1985 to 2000. The values of patch density and convergence index kept stable, and the values of diversity, evenness indices decrease, while dominance and and IE showed a slight fractal dimension indices were increased. All types of wetland landscapes had higher adjacency probabilities with grassland landscape in 1985 and 2000, and there was extremely weak hydrological link and large spatial gap among river, glacier, reservoir and pond wetlands due to low adjacency matrix values. Since their cumulative contribution exceeded 81% through the PCA analysis, the agriculture activities would be the main driving force to the landscape changes during the past 15 years.展开更多
基金National Natural Science Foundation of China(NSFC)“The Impact of R&D Factor Flow on Regional Innovation Performance:Based on the Perspective of Spatial Resource Allocation”(71874084)Jiangsu Province“Six Talent Peaks”High-level Talent Project(JY-009).
文摘An in-depth investigation into the effect of embedment in global value chain(GVC)on energy conservation and emissions reduction is of great significance for scientifically assessing the environmental impact of GVC participation,and promoting high-quality development in China.This paper incorporates GVC embedment,energy consumption and carbon emissions into the same analysis framework for the first time.Based on the WIOD database,this paper theoretically and empirically examines the impact and mechanism of global value chain embeddedness on carbon emission reduction from two dimensions:energy consumption intensity and energy consumption structure.The study found that GVC embedment significantly reduced the industry’s carbon emission intensity;developing economies’embedment in GVC helped reduce their carbon emission intensity,while the effect was not obvious in developed economies.GVC embedment had a significant inhibitory effect on the carbon emissions in both upstream and downstream industries,but not conducive to carbon reduction of lowtech manufacturing.The mechanism test shows that the GVC embedment not only exhibits the dual effects of energy conservation and emissions reduction,but also has a significant impact on carbon emissions by reducing the energy consumption intensity and improving the energy consumption structure.
基金the Joint Funds of the National Natural Science Foundation of China(U2006215)the China Postdoctoral Science Foundation(2022M720462)。
文摘Salinity stress is one of the critical environmental drivers of soil organic matter(SOM)decomposition in coastal ecosystems.Although the temperature sensitivity(Q_(10))of SOM decomposition has been widely applied in Earth system models to forecast carbon processes,the impact of salinity on SOM decomposition by restructuring microbial communities remains uncovered.Here,we conducted a microcosm experiment with soils collected from the coastal salt marsh in the Yellow River Estuary,which is subjected to strong dynamics of salinity due to both tidal flooding and drainage.By setting a gradient of salt solutions,soil salinity was adjusted to simulate salinity stress and soil carbon emission(CO_(2))rate was measured over the period.Results showed that as salinity increased,the estimated decomposition constants based on first-order kinetics gradually decreased at different temperatures.Below the 20‰salinity treatments,which doubled the soil salinity,Q_(10)increased with increasing salinity;but higher salinity constrained the temperature-related response of SOM decomposition by inhibiting microbial growth and carbon metabolisms.Soil bacteria were more sensitive to salinity stress than fungi,which can be inferred from the response of microbial beta-diversity to changing salinity.Among them,the phylotypes assigned to Gammaproteobacteria and Bacilli showed higher salt tolerance,whereas taxa affiliated with Alphaproteobacteria and Bacteroidota were more easily inhibited by the salinity stress.Several fungal taxa belonging to Ascomycota had higher adaptability to the stress.As the substrate was consumed with the incubation,bacterial competition intensified,but the fungal co-occurrence pattern changed weakly during decomposition.Collectively,these findings revealed the threshold effect of salinity on SOM decomposition in coastal salt marshes and emphasized that salt stress plays a key role in carbon sequestration by regulating microbial keystone taxa,metabolisms,and interactions.
基金supported by the Grant from the National Natural Science Foundation of China(72203107)Ministry of Education Humanities and Social Science Fund Project(23YJC790113)
文摘By constructing a yardstick competition model of the performance equation,this paper analyzes the internal mechanism of local governments'competition of science and technology(S&T)expenditure in China.By using the Dynamic Spatial Panel Model,we analyze the competition empirically from five dimensions:geographical adjacency,geographical distance,administrative adjacency,administrative grade and economic distance.According to the results,the local governments'S&T expenditure showed a significant strategic competition phenomenon,that is,there is a“competition for innovation”,and the competition is more obvious between regions with close geographical proximity and administrative relations.“Competition for innovation”will be affected by political exogenous shocks such as those from the National People's Congress(NPC)of China;There is a“father-son competition”relationship between the superior and inferior governments.At last,the competition can promote the regional innovation significantly,which shows that“competition for innovation”is a kind of top-by-top competition.The conclusions may provide some useful suggestions for optimizing the relationship between local governments and promoting the construction of an innovative country.
文摘Based on the interpretation and vector processing of remote sensing images in 1985 and 2000, the spatial changes of wetland landscape patterns in Dadu River catchment in the last two decades were studied using spatial analysis method. Supported by Apack soft-ware, the indices of wetland landscape pattern were calculated, and the information entropy (IE) was also introduced to show the changes of wetland landscape information. Results showed that wetland landscape in this region was characteristic of patch-corridor-matrix configuration and dominantly consisted of natural wetlands. Landscape patterns changed a little with low fragment and showed concentrated distribution with partial scattered distribution during the period from 1985 to 2000. The values of patch density and convergence index kept stable, and the values of diversity, evenness indices decrease, while dominance and and IE showed a slight fractal dimension indices were increased. All types of wetland landscapes had higher adjacency probabilities with grassland landscape in 1985 and 2000, and there was extremely weak hydrological link and large spatial gap among river, glacier, reservoir and pond wetlands due to low adjacency matrix values. Since their cumulative contribution exceeded 81% through the PCA analysis, the agriculture activities would be the main driving force to the landscape changes during the past 15 years.