Chemical looping combustion(CLC)is a clean and efficient flame-free combustion technology,which combust the fuels by lattice oxygen from a solid oxygen carrier with inherent CO_(2)capture.The development of oxygen car...Chemical looping combustion(CLC)is a clean and efficient flame-free combustion technology,which combust the fuels by lattice oxygen from a solid oxygen carrier with inherent CO_(2)capture.The development of oxygen carriers with low cost and high redox performance is crucial to the whole efficiency of CLC process.As the solid by-product from the sulfuric acid production,pyrite cinder presented excellent redox performance as an oxygen carrier in CLC process.The main components in pyrite cinder are Fe_(2)O_(3),CaSO_(4),Al_(2)O_(3)and SiO_(2)in which Fe_(2)O_(3)is the active component to provide lattice oxygen.In order to systematic investigate the functions of supports(CaSO_4,Al_(2)O_(3)and SiO_(2))in pyrite cinder,three oxygen carriers(Fe_(2)O_(3)-CaSO_(4),Fe_(2)O_(3)-Al_(2)O_(3)and Fe_(2)O_(3)-SiO_(2))were prepared and evaluated in this study.The results showed that Fe_(2)O_(3)-CaSO_(4) displayed high redox activity and cycling stability in the multiple redox cycles.However,both Fe_(2)O_(3)-Al_(2)O_(3)and Fe_(2)O_(3)-SiO_(2)experienced serious deactivation during redox reactions.It indicated that the inert Fe-Si solid solution(Fe_(2)SiO_(4))was formed in the spent Fe_(2)O_(3)-SiO_(2)sample,which decreased the oxygen carrying capacity of this sample.The XPS results showed that the oxygen species on the surface of Fe_(2)O_(3)-CaSO_(4) could be fully recovered after the 20 redox cycles.It can be concluded that CaSO_(4) is the key to the high redox activity and cycling stability of pyrite cinder.展开更多
基金supported by the Program for High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu ProvinceFoundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2021-K56)+1 种基金Foundation of Key Laboratory of Energy Thermal Conversion and Control of Ministry of EducationSenior Talent Foundation of Jiangsu University(20JDG40)。
文摘Chemical looping combustion(CLC)is a clean and efficient flame-free combustion technology,which combust the fuels by lattice oxygen from a solid oxygen carrier with inherent CO_(2)capture.The development of oxygen carriers with low cost and high redox performance is crucial to the whole efficiency of CLC process.As the solid by-product from the sulfuric acid production,pyrite cinder presented excellent redox performance as an oxygen carrier in CLC process.The main components in pyrite cinder are Fe_(2)O_(3),CaSO_(4),Al_(2)O_(3)and SiO_(2)in which Fe_(2)O_(3)is the active component to provide lattice oxygen.In order to systematic investigate the functions of supports(CaSO_4,Al_(2)O_(3)and SiO_(2))in pyrite cinder,three oxygen carriers(Fe_(2)O_(3)-CaSO_(4),Fe_(2)O_(3)-Al_(2)O_(3)and Fe_(2)O_(3)-SiO_(2))were prepared and evaluated in this study.The results showed that Fe_(2)O_(3)-CaSO_(4) displayed high redox activity and cycling stability in the multiple redox cycles.However,both Fe_(2)O_(3)-Al_(2)O_(3)and Fe_(2)O_(3)-SiO_(2)experienced serious deactivation during redox reactions.It indicated that the inert Fe-Si solid solution(Fe_(2)SiO_(4))was formed in the spent Fe_(2)O_(3)-SiO_(2)sample,which decreased the oxygen carrying capacity of this sample.The XPS results showed that the oxygen species on the surface of Fe_(2)O_(3)-CaSO_(4) could be fully recovered after the 20 redox cycles.It can be concluded that CaSO_(4) is the key to the high redox activity and cycling stability of pyrite cinder.