Novel cobalt Fischer-Tropsch synthesis (FTS) catalysts were prepared from natural halloysite nanotubes (HNT) by double-solvent and wet- impregnation methods, and characterized by TEM, XRD, TPR and N2 adsorption-de...Novel cobalt Fischer-Tropsch synthesis (FTS) catalysts were prepared from natural halloysite nanotubes (HNT) by double-solvent and wet- impregnation methods, and characterized by TEM, XRD, TPR and N2 adsorption-desorption. Comparing with the catalyst prepared by wet- impregnation method, the catalyst prepared by double-solvent method reduces Co3O4 particle migration and agglomeration due to size-induced effect, thus showing higher catalytic activity for Fischer-Tropsch synthesis.展开更多
Catalytic transfer hydrogenation(CTH)is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones.However,managing the abilities of solid catalysts to adsorb substrates and to conv...Catalytic transfer hydrogenation(CTH)is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones.However,managing the abilities of solid catalysts to adsorb substrates and to convert them into desired products is a challenging task.Herein,we report the synthesis of carbon coated LaFe_(0.92)Pd_(0.08)O_(3) composites(LFPO-8@C)for CTH of benzaldehyde(BzH)into benzyl alcohol(BzOH),using isopropanol(IPA)as hydrogen source.The coating with carbon improves the ability to adsorb/transfer reactants from solution to active sites,and the doping of Pd2+at Fe3+site strengthens the ability of LaFeO_(3) to convert BzH into BzOH.A balanced point between them(i.e.,abilities to adsorb BzH and to convert BzH into BzOH)is obtained at LFPO-8@C,which exhibits a BzOH formation rate of 3.88 mmol·gcat^(-1)·h^(-1) at 180℃ for 3 h,which is 1.50 and 2.72 times faster than those of LFPO-8 and LaFeO_(3)@C.A reaction mechanism is proposed,in which the acidic sites(e.g.,Fe^(4+),oxygen vacancy)are used for the activation of C=O bond of BzH and O-H bond of IPA,and the basic sites(e.g.,lattice oxygen)for the activation ofα-H(O-H)bond of IPA.展开更多
The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a ...The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.展开更多
Construction of heterojunctions is a normal and effective strategy to improve the photocatalytic performances of semiconductors,through which both the lifetime and the redox ability of electrons/holes can be improved,...Construction of heterojunctions is a normal and effective strategy to improve the photocatalytic performances of semiconductors,through which both the lifetime and the redox ability of electrons/holes can be improved,as co mpared to the respective component.On this basis,we constructed Z-scheme CdS/LaFeO_(3) heterojunctions(CdS/LFO),by in-situ growing different amounts of CdS on the surface of LaFeO_(3),for photocatalytic degradation of tetracycline hydrochloride(TC)in aqueous solution at room temperature.The crystal structure,surface morphology and optoelectronic properties of the COS/LFO heterojunctions were systemically characterized to correlate the reaction activity.Photocatalytic tests indicate that the CdS/LFO heterojunctions exhibit promising activity for TC degradation under visible light irradiation(λ≥420 nm),with 85%TC conversion obtained at reaction time of 45 min,which is 3.4 and 1.9 times higher than that of CdS and LaFeO_(3).The CdS/LFO heterojunctions are also stable in the reaction and can be reused for four cycles with no appreciable activity loss.The applicability of CdS/LFO to photocatalytic degradation of organic dyes,as well as the reaction mechanism,was also explored.展开更多
Internal waves transport material and energy from the upper water column to the deep ocean, disturbing seabed sediments and resulting in phenomena such as seabed erosion and changes in topography. On the northern slop...Internal waves transport material and energy from the upper water column to the deep ocean, disturbing seabed sediments and resulting in phenomena such as seabed erosion and changes in topography. On the northern slope of the South China Sea and in many coastal margins worldwide, the zones with internal wave action closely overlap with areas where natural gas hydrates are present. However, due to significant differences in the spatial and temporal scales, understanding the influence of internal waves on methane releases from deep seabeds is challenging. In this study, in situ observations of seabed microseismicity and internal waves are conducted at water depths of 655 meters and 1450 meters in the Pearl River Canyon of the South China Sea. The microseismicity caused by internal waves and seabed methane releases is identified, and a method to establish the correlation between internal waves and seabed methane releases through the use of microseismic recordings is proposed, aiming to obtain direct observational evidence of internal waves intensifying seabed methane releases. The results show that internal waves and seabed methane releases generate significant microseismic signals, indicating the continuous influence of internal waves on the deep seabed of the northern slope of the South China Sea and revealing active methane release phenomena on the seabed. At both long and short time scales, internal waves increase the frequency of seabed methane releases by 4.2 times and 2.4 times, respectively, while also enhancing the intensity of these releases. These changes are influenced by the alterations in seabed flow velocity, pressure, and temperature that are induced by internal wave activities. This study emphasizes that microseismic signals are effective carriers of information for multiscale geological processes on seabeds and suggests that internal waves exacerbate marine geological hazards and contribute to global climate change by intensifying seabed methane releases.展开更多
Perovskite oxides LaCoO3 prepared by templating,co-precipitation and sol-gel method with different complexants were systematically characterized and its catalytic performances for CO oxidation were investigated.The sa...Perovskite oxides LaCoO3 prepared by templating,co-precipitation and sol-gel method with different complexants were systematically characterized and its catalytic performances for CO oxidation were investigated.The samples were characterized by X-ray diffraction,thermogravimetry analysis and differential scanning calorimetry,N2 physisorption,transmission electron microscopy,temperature program reduction of hydrogen,temperature program desorption of oxygen and X-ray photoelectron spectroscopy measurement,results of which show that the properties of LaCoO3,such as surface morphology,surface area,surface compositions,redox capability,oxygen vacancy,as well as the calcination temperature and formation mechanism,depend intimately on the preparation method.Catalytic tests indicate that the sample prepared by carbon templating method shows the best activity for CO oxidation,with full CO conversion obtained at 135℃.In particular,the catalyst can be activated and significant increase of activity can be obtained with the increase of reaction time.The cyclic and longterm stability of catalysts were discussed and compared.展开更多
The effects of Zr doping on the existence of Cu and the catalytic performance of Ce_(0.7−x)Zr_(x)Cu_(0.3)O_(2)for CO oxidation were investigated.The characterization results showed that all samples have a cubic struct...The effects of Zr doping on the existence of Cu and the catalytic performance of Ce_(0.7−x)Zr_(x)Cu_(0.3)O_(2)for CO oxidation were investigated.The characterization results showed that all samples have a cubic structure,and a small amount of Zr doping facilitates Cu^(2+) ions entering the CeO2 lattice,but excessive Zr doping leads to the formation of surface CuO crystals again.Thus,the number of oxygen vacancies caused by the Cu^(2+) entering the lattice(e.g.,Cu^(2+)-□-Ce^(4+);□:oxygen vacancy),and the amount of reducible copper species caused by CuO crystals,varies with the Zr doping.Catalytic CO oxidation tests indicated that the oxygen vacancy and the reducible copper species were the adsorption and activation sites of O_(2)and CO,respectively,and the cooperative effects between them accounted for the high CO oxidation activity.Thus,the samples x=0.1 and 0.3,which possessed the most oxygen vacancy or reducible copper species,showed the best activity for CO oxidation,with full CO conversion obtained at 110℃.The catalyst is also stable and has good resistance to water during the reaction.展开更多
With the rapid development of industry,volatile organic compounds(VOCs)are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health.Catalyt...With the rapid development of industry,volatile organic compounds(VOCs)are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health.Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions.This review first introduces the hazards of VOCs,their treatment technologies,and summarizes the treatment mechanism issues.Next,the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded,with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications,and on the treatment of different VOCs.The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed.This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.展开更多
Antibiotics such as sulfonamides are widely used in agriculture as growth promoters and medicine in treatment of infectious diseases.However,the release of these antibiotics has caused serious environmental problems.I...Antibiotics such as sulfonamides are widely used in agriculture as growth promoters and medicine in treatment of infectious diseases.However,the release of these antibiotics has caused serious environmental problems.In this paper,photocatalytic oxidation technology was used to degrade sulfadiazine(SDZ),one of the typical sulfonamides antibiotics,in UV illuminated TiO_(2)suspensions.It was found that TiO_(2)nanosheets(TiO_(2)-NSs)with exposed(001)facets exhibit much higher photoreactivity towards SDZ degradation compared to TiO_(2)nanoparticles(TiO_(2)-NPs)with a rate constant increases from0.017 min^(-1)to 0.035 min^(-1),improving by a factor of 2.1.Under the attacking of reactive oxygen species(ROSs)such as superoxide radicals(*O_(2)^(-))and hydroxyl radicals(*OH),SDZ was steady degraded on the surface of TiO_(2)-NSs.Based on the identification of the produced intermediates by LC–MS/MS,possible degradation pathways of SDZ,which include desulfonation,oxidation and cleavage,were put forwards.After UV irradiation for 4 h,nearly 90%of the total organic carbon(TOC)can be removed in suspensions of TiO_(2)-NSs,indicating the mineralization of SDZ.TiO_(2)-NSs also exhibits excellent stability in photocatalytic degradation of SDZ in wide range of pH.Even after recycling used for 7 times,more than 91.3%of the SDZ can be efficiently removed,indicating that they are promising to be practically used in treatment of wastewater containing antibiotics.展开更多
基金supported by the National Natural Science foundation of China (21073238)the National Basic Research Program of China(2011CB211704)the Special Fund for Basic Scientific Research of Central Colleges,South-Central University for Nationalities
文摘Novel cobalt Fischer-Tropsch synthesis (FTS) catalysts were prepared from natural halloysite nanotubes (HNT) by double-solvent and wet- impregnation methods, and characterized by TEM, XRD, TPR and N2 adsorption-desorption. Comparing with the catalyst prepared by wet- impregnation method, the catalyst prepared by double-solvent method reduces Co3O4 particle migration and agglomeration due to size-induced effect, thus showing higher catalytic activity for Fischer-Tropsch synthesis.
基金support provided by the National Natural Science Foundation of China(Nos.42277485,21976141,22102123)the Department of Science and Technology of Hubei Province(No.2021CFA034)+3 种基金the Department of Education of Hubei Province(Nos.T2020011,Q20211712)the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(Nos.STRZ202202,STRZ202101)is gratefully acknowledged.S.A.C.C.acknowledges Fundação para a Ciência e a Tecnologia(FCT)Portuqal for Scientific Employment Stimulus-Institutional Call(CEEC-INST/00102/2018)and Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES(UIDB/50006/2020,UIDP/5006/2020).
文摘Catalytic transfer hydrogenation(CTH)is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones.However,managing the abilities of solid catalysts to adsorb substrates and to convert them into desired products is a challenging task.Herein,we report the synthesis of carbon coated LaFe_(0.92)Pd_(0.08)O_(3) composites(LFPO-8@C)for CTH of benzaldehyde(BzH)into benzyl alcohol(BzOH),using isopropanol(IPA)as hydrogen source.The coating with carbon improves the ability to adsorb/transfer reactants from solution to active sites,and the doping of Pd2+at Fe3+site strengthens the ability of LaFeO_(3) to convert BzH into BzOH.A balanced point between them(i.e.,abilities to adsorb BzH and to convert BzH into BzOH)is obtained at LFPO-8@C,which exhibits a BzOH formation rate of 3.88 mmol·gcat^(-1)·h^(-1) at 180℃ for 3 h,which is 1.50 and 2.72 times faster than those of LFPO-8 and LaFeO_(3)@C.A reaction mechanism is proposed,in which the acidic sites(e.g.,Fe^(4+),oxygen vacancy)are used for the activation of C=O bond of BzH and O-H bond of IPA,and the basic sites(e.g.,lattice oxygen)for the activation ofα-H(O-H)bond of IPA.
基金National Natural Science Foundation of China,Grant/Award Numbers:42277485,21976141,22272197,22102184,22102136,U22A20392Natural Science Foundation of Hubei Province,Grant/Award Numbers:2022CFB1001,2021CFA034+1 种基金Department of Education of Hubei Province,Grant/Award Numbers:Q20221701,Q20221704Joint Fund of Yulin University and Dalian National Laboratory for Clean Energy,Grant/Award Number:YLU-DNL Fund 2022008。
文摘The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.
基金Project supported by the National Natural Science Foundation of China(21976141,42277485)the Department of Science and Technology of Hubei Province(2021CFA034)+1 种基金the Department of Education of Hubei Province(T2020011)the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-dyeing&Finishing(STRZ202202)。
文摘Construction of heterojunctions is a normal and effective strategy to improve the photocatalytic performances of semiconductors,through which both the lifetime and the redox ability of electrons/holes can be improved,as co mpared to the respective component.On this basis,we constructed Z-scheme CdS/LaFeO_(3) heterojunctions(CdS/LFO),by in-situ growing different amounts of CdS on the surface of LaFeO_(3),for photocatalytic degradation of tetracycline hydrochloride(TC)in aqueous solution at room temperature.The crystal structure,surface morphology and optoelectronic properties of the COS/LFO heterojunctions were systemically characterized to correlate the reaction activity.Photocatalytic tests indicate that the CdS/LFO heterojunctions exhibit promising activity for TC degradation under visible light irradiation(λ≥420 nm),with 85%TC conversion obtained at reaction time of 45 min,which is 3.4 and 1.9 times higher than that of CdS and LaFeO_(3).The CdS/LFO heterojunctions are also stable in the reaction and can be reused for four cycles with no appreciable activity loss.The applicability of CdS/LFO to photocatalytic degradation of organic dyes,as well as the reaction mechanism,was also explored.
基金supported by the National Natural Science Foundation of China (Grant No.41831280)。
文摘Internal waves transport material and energy from the upper water column to the deep ocean, disturbing seabed sediments and resulting in phenomena such as seabed erosion and changes in topography. On the northern slope of the South China Sea and in many coastal margins worldwide, the zones with internal wave action closely overlap with areas where natural gas hydrates are present. However, due to significant differences in the spatial and temporal scales, understanding the influence of internal waves on methane releases from deep seabeds is challenging. In this study, in situ observations of seabed microseismicity and internal waves are conducted at water depths of 655 meters and 1450 meters in the Pearl River Canyon of the South China Sea. The microseismicity caused by internal waves and seabed methane releases is identified, and a method to establish the correlation between internal waves and seabed methane releases through the use of microseismic recordings is proposed, aiming to obtain direct observational evidence of internal waves intensifying seabed methane releases. The results show that internal waves and seabed methane releases generate significant microseismic signals, indicating the continuous influence of internal waves on the deep seabed of the northern slope of the South China Sea and revealing active methane release phenomena on the seabed. At both long and short time scales, internal waves increase the frequency of seabed methane releases by 4.2 times and 2.4 times, respectively, while also enhancing the intensity of these releases. These changes are influenced by the alterations in seabed flow velocity, pressure, and temperature that are induced by internal wave activities. This study emphasizes that microseismic signals are effective carriers of information for multiscale geological processes on seabeds and suggests that internal waves exacerbate marine geological hazards and contribute to global climate change by intensifying seabed methane releases.
基金Project supported by the National Natural Science Foundation of China(21203254)Natural Science Foundation of Hubei Province(2015CFA138)+1 种基金Natural Science Foundation of Liaoning Province(201602681)Shenyang Municipal Science and Technology Planning Projects(17-76-1-00)
文摘Perovskite oxides LaCoO3 prepared by templating,co-precipitation and sol-gel method with different complexants were systematically characterized and its catalytic performances for CO oxidation were investigated.The samples were characterized by X-ray diffraction,thermogravimetry analysis and differential scanning calorimetry,N2 physisorption,transmission electron microscopy,temperature program reduction of hydrogen,temperature program desorption of oxygen and X-ray photoelectron spectroscopy measurement,results of which show that the properties of LaCoO3,such as surface morphology,surface area,surface compositions,redox capability,oxygen vacancy,as well as the calcination temperature and formation mechanism,depend intimately on the preparation method.Catalytic tests indicate that the sample prepared by carbon templating method shows the best activity for CO oxidation,with full CO conversion obtained at 135℃.In particular,the catalyst can be activated and significant increase of activity can be obtained with the increase of reaction time.The cyclic and longterm stability of catalysts were discussed and compared.
基金support provided by the following organisations is gratefully acknowledged:the National Natural Science Foundation of China(Grant No.21976141)the Central Committee Guides Local Science and Technology Development Special Project of Hubei Province(Grant No.2019ZYYD073)+1 种基金the Outstanding Young and Middle-aged Scientific and Technological Innovation Team of the Education Department of Hubei Province(Grant No.T2020011)the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(Grant No.STRZ2020003).
文摘The effects of Zr doping on the existence of Cu and the catalytic performance of Ce_(0.7−x)Zr_(x)Cu_(0.3)O_(2)for CO oxidation were investigated.The characterization results showed that all samples have a cubic structure,and a small amount of Zr doping facilitates Cu^(2+) ions entering the CeO2 lattice,but excessive Zr doping leads to the formation of surface CuO crystals again.Thus,the number of oxygen vacancies caused by the Cu^(2+) entering the lattice(e.g.,Cu^(2+)-□-Ce^(4+);□:oxygen vacancy),and the amount of reducible copper species caused by CuO crystals,varies with the Zr doping.Catalytic CO oxidation tests indicated that the oxygen vacancy and the reducible copper species were the adsorption and activation sites of O_(2)and CO,respectively,and the cooperative effects between them accounted for the high CO oxidation activity.Thus,the samples x=0.1 and 0.3,which possessed the most oxygen vacancy or reducible copper species,showed the best activity for CO oxidation,with full CO conversion obtained at 110℃.The catalyst is also stable and has good resistance to water during the reaction.
基金the following organisations is gratefully acknowledged:the National Natural Science Foundation of China(Grant Nos.21976141,22102123,42277485)the Department of Science and Technology of Hubei Province(Grant No.2021CFA034)+3 种基金the Department of Education of Hubei Province(Grant Nos.T2020011,Q20211712)the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(Grant No.STRZ202101)and the South Africa National Research Foundation(No.137947)SACC acknowledges Fundação para a Ciência e a Tecnologia(FCT),Portugal for Scientific Employment Stimulus-Institutional Call(Grant No.CEECINST/00102/2018)Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES(Grant Nos.UIDB/50006/2020 and UIDP/5006/2020).
文摘With the rapid development of industry,volatile organic compounds(VOCs)are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health.Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions.This review first introduces the hazards of VOCs,their treatment technologies,and summarizes the treatment mechanism issues.Next,the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded,with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications,and on the treatment of different VOCs.The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed.This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.
基金financially supported by the National Natural Science Foundation of China(Nos.51672312 and 21976141)the Fundamental Research Funds for the Central Universities:South-Central University for Nationalities(Nos.CZY17016 and CZZ21012)+1 种基金Environmental Pollution and Prevention(Team-Construction Project,No.KTZ20043)Undergradate Training Program for Innovation and Entrepreneurship for South-Central University for Nationalities(No.XCX2054)。
文摘Antibiotics such as sulfonamides are widely used in agriculture as growth promoters and medicine in treatment of infectious diseases.However,the release of these antibiotics has caused serious environmental problems.In this paper,photocatalytic oxidation technology was used to degrade sulfadiazine(SDZ),one of the typical sulfonamides antibiotics,in UV illuminated TiO_(2)suspensions.It was found that TiO_(2)nanosheets(TiO_(2)-NSs)with exposed(001)facets exhibit much higher photoreactivity towards SDZ degradation compared to TiO_(2)nanoparticles(TiO_(2)-NPs)with a rate constant increases from0.017 min^(-1)to 0.035 min^(-1),improving by a factor of 2.1.Under the attacking of reactive oxygen species(ROSs)such as superoxide radicals(*O_(2)^(-))and hydroxyl radicals(*OH),SDZ was steady degraded on the surface of TiO_(2)-NSs.Based on the identification of the produced intermediates by LC–MS/MS,possible degradation pathways of SDZ,which include desulfonation,oxidation and cleavage,were put forwards.After UV irradiation for 4 h,nearly 90%of the total organic carbon(TOC)can be removed in suspensions of TiO_(2)-NSs,indicating the mineralization of SDZ.TiO_(2)-NSs also exhibits excellent stability in photocatalytic degradation of SDZ in wide range of pH.Even after recycling used for 7 times,more than 91.3%of the SDZ can be efficiently removed,indicating that they are promising to be practically used in treatment of wastewater containing antibiotics.