Fruit wart is an important appearance trait influencing consumer preferences of bitter gourd(Momordica charantia L.).The molecular genetic mechanisms underlying fruit wart formation in bitter gourd are largely unknown...Fruit wart is an important appearance trait influencing consumer preferences of bitter gourd(Momordica charantia L.).The molecular genetic mechanisms underlying fruit wart formation in bitter gourd are largely unknown.In this study,genetic analysis based on four generations showed that fruit wart formation in bitter gourd was controlled by a single dominant locus named as Fwa.The Fwa locus was initially mapped into a 4.82 Mb region on pseudochromosome 4 by BSA-seq analysis and subsequently narrowed down to a 286.30 kb region by linkage analysis.A large F2population consisting of 2360 individuals was used to screen recombinants,and the Fwa locus was finally fine mapped into a 22.70 kb region harboring four protein-coding genes through recombination analysis.MC04g1399,encoding an epidermal patterning factor 2-like protein,was proposed as the best candidate gene for Fwa via sequence variation and expression analysis.In addition,a 1-bp insertion and deletion(InDel)variation within MC04g1399 was converted to a cleaved amplified polymorphic sequence(CAPS)marker that could precisely distinguish between the warty and non-warty types with an accuracy rate of 100%among a wide panel of 126 bitter gourd germplasm resources.Our results not only provide a scientific basis for deciphering the molecular mechanisms underlying fruit wart formation but also provide a powerful tool for efficient genetic improvement of fruit wart via marker-assisted selection.展开更多
Bitter gourd(Momordica charantia)is a popular cultivated vegetable in Asian and African countries.To reveal the characteristics of the genomic structure,evolutionary trajectory,and genetic basis underlying the domesti...Bitter gourd(Momordica charantia)is a popular cultivated vegetable in Asian and African countries.To reveal the characteristics of the genomic structure,evolutionary trajectory,and genetic basis underlying the domestication of bitter gourd,we performed whole-genome sequencing of the cultivar Dali-11 and the wild small-fruited line TR and resequencing of 187 bitter gourd germplasms from 16 countries.The major gene clusters(Bi clusters)for the biosynthesis of cucurbitane triterpenoids,which confer a bitter taste,are highly conserved in cucumber,melon,and watermelon.Comparative analysis among cucurbit genomes revealed that the Bi cluster involved in cucurbitane triterpenoid biosynthesis is absent in bitter gourd.Phylogenetic analysis revealed that the TR group,including 21 bitter gourd germplasms,may belong to a new species or subspecies independent from M.charantia.Furthermore,we found that the remaining 166 M.charantia germplasms are geographically differentiated,and we identified 710,412,and 290 candidate domestication genes in the South Asia,Southeast Asia,and China populations,respectively.This study provides new insights into bitter gourd genetic diversity and domestication and will facilitate the future genomics-enabled improvement of bitter gourd.展开更多
High-entropy alloys(HEAs)are a promising solution for large-scale hydrogen storage(H-storage)and are therefore receiving increasing attention from the materials science community.In this study,we systematically invest...High-entropy alloys(HEAs)are a promising solution for large-scale hydrogen storage(H-storage)and are therefore receiving increasing attention from the materials science community.In this study,we systematically investigated the microstructures and H-storage properties of V_(35)Ti_(35)Cr_(10) Fe_(10)M_(10)(M=Mn,Co,Sc,or Ni)HEAs prepared by arcmelting.The cast HEAs were found to be nanocrystalline.The crystal lattice parameters and hydrogen absorption energies of the alloys were calculated using density functional theory(DFT)calculations.The alloys can be fully activated in just one cycle of hydrogen absorption/desorption under mild conditions,after which they reach hydrogen absorption saturation in approximately 100 s at ambient temperature.The hydrogenation kinetics of the HEAs are approximately five times higher than that of conventional solid-solution alloys with a body-centered cubic(BCC)structure.By performing in-situ hydriding differential scanning calorimetry in combination with DFT calculations,we revealed that the alloys are more susceptible to hydrogenation than traditional BCC structural alloys.The H-storage capacity of V_(35)Ti_(35)Cr_(10) Fe_(10)M_(10) alloys at ambient temperature was higher than that of HEAs reported in the literature.Quasi-in-situ X-ray diffraction characterization of the HEAs’hydrogenation revealed a phase transition process from a BCC to facecentered cubic,passing through a pseudo-BCC structure.Our work introduces a new perspective for designing alloys with ultrafast hydrogen absorption kinetics and high capacity for large-scale,room-temperature-applicable H-storage.展开更多
Supramolecular chemistry during the synthesis of carbon-nitrogen-based materials has recently experienced a renaissance in the arena of photocatalysis and electrocatalysis.In this review,we start with the discussion o...Supramolecular chemistry during the synthesis of carbon-nitrogen-based materials has recently experienced a renaissance in the arena of photocatalysis and electrocatalysis.In this review,we start with the discussion of supramolecular assemblies-derived carbon-nitrogen-based materials’regulation from the aspect of morphology,chemical composition,and micro/nanostructural control.Afterwards the recent advances of these materials in energy and environment related applications,including degradation of pollutants,water splitting,oxygen reduction reactions,CO_(2) reduction reactions along with organic synthesis are summarized.The correlations between the structural features and physicochemical properties of the carbonnitrogen-based materials and the specific catalytic activity are discussed in depth.By highlighting the opportunities and challenges of supramolecular assembly strategies,we attempt an outlook on possible future developments for highly efficient carbon-based photo/electrocatalysts.展开更多
Super-resolution (SR) is a widely used tech- nology that increases image resolution using algorithmic methods. However, preserving the local edge structure and visual quality in infrared (IR) SR images is challeng...Super-resolution (SR) is a widely used tech- nology that increases image resolution using algorithmic methods. However, preserving the local edge structure and visual quality in infrared (IR) SR images is challenging because of their disadvantages, such as lack of detail, poor contrast, and blurry edges. Traditional and advanced methods maintain the quantitative measures, but they mostly fail to preserve edge and visual quality. This paper proposes an algorithm based on high frequency layer features. This algorithm focuses on the IR image edge texture in the reconstruction process. Experimental results show that the mean gradient of the IR image reconstructed by the proposed algorithm increased by 1.5, 1.4, and 1.2 times than that of the traditional algorithm based on L1- norm, L2-norm, and traditional mixed norm, respectively. The peak signal-to-noise ratio, structural similarity index, and visual effect of the reconstructed image also improved.展开更多
Aiming at the disadvantages of the traditional projection onto convex sets of blurry edges and lack of image details,this paper proposes an improved projection onto convex sets(POCS) method to enhance the quality of...Aiming at the disadvantages of the traditional projection onto convex sets of blurry edges and lack of image details,this paper proposes an improved projection onto convex sets(POCS) method to enhance the quality of image super-resolution reconstruction(SRR).In traditional POCS method,bilinear interpolation easily blurs the image.In order to improve the initial estimation of high-resolution image(HRI) during reconstruction of POCS algorithm,the initial estimation of HRI is obtained through iterative curvature-based interpolation(ICBI) instead of bilinear interpolation.Compared with the traditional POCS algorithm,the experimental results in subjective evaluation and objective evaluation demonstrate the effectiveness of the proposed method.The visual effect is improved significantly and image detail information is preserved better.展开更多
The rapid development of emerging technologies observed in recent years,such as artificial intelligence, machine learning, mobile internet, big data,cloud computing, and the Internet of Everything, are generating esca...The rapid development of emerging technologies observed in recent years,such as artificial intelligence, machine learning, mobile internet, big data,cloud computing, and the Internet of Everything, are generating escalatingdemands for expanding the capacity density, and speed in next-generation opticalcommunications. This poses a significant challenge to existing communicationtechniques. Within this context, the integration of near-infraredbroadband, tunable, and high-gain luminescent materials into silicon opticalcircuits or fiber architectures to transmit and modulate light shows enormouspotential for advancing next-generation communication techniques. Here, thisreview provides an overview of the recent breakthroughs in near-infrared luminescentepitaxial/colloidal quantum dots, and metal-active-center-doped materialsfor broadband optical amplifiers and tunable lasers. We also expound onefforts to enhance the bandwidth and gain of these materials-based amplifiersand lasers, exploring the challenges associate with developing ultra-broadbandand high-speed optical communication systems. Additionally, the potentialapplications in Fifth Generation Fixed Networks, integration with 5G and 6Gwireless networks, compensation for current Si electronic based CMOS forhigh computing capability, and the prospects of these light sources for nextgenerationoptoelectronic devices are discussed.展开更多
基金supported by the Science and Technology Planning Project of Guangdong Province(Grants Nos.2022 B0202160015 and 2019A050520002)the Seed Industry Revitalization Project of Special Funds for Provincial Rural Revitalization Strategy(Grant No.2022-NPY-00-027)+1 种基金the Guangzhou Science and Technology Plan Projects(Grants Nos.202002020086,202102020800 and 202206010170)the Guangzhou Basic and Applied Basic Research Project(Grant No.SL2023A04J01673)。
文摘Fruit wart is an important appearance trait influencing consumer preferences of bitter gourd(Momordica charantia L.).The molecular genetic mechanisms underlying fruit wart formation in bitter gourd are largely unknown.In this study,genetic analysis based on four generations showed that fruit wart formation in bitter gourd was controlled by a single dominant locus named as Fwa.The Fwa locus was initially mapped into a 4.82 Mb region on pseudochromosome 4 by BSA-seq analysis and subsequently narrowed down to a 286.30 kb region by linkage analysis.A large F2population consisting of 2360 individuals was used to screen recombinants,and the Fwa locus was finally fine mapped into a 22.70 kb region harboring four protein-coding genes through recombination analysis.MC04g1399,encoding an epidermal patterning factor 2-like protein,was proposed as the best candidate gene for Fwa via sequence variation and expression analysis.In addition,a 1-bp insertion and deletion(InDel)variation within MC04g1399 was converted to a cleaved amplified polymorphic sequence(CAPS)marker that could precisely distinguish between the warty and non-warty types with an accuracy rate of 100%among a wide panel of 126 bitter gourd germplasm resources.Our results not only provide a scientific basis for deciphering the molecular mechanisms underlying fruit wart formation but also provide a powerful tool for efficient genetic improvement of fruit wart via marker-assisted selection.
文摘Bitter gourd(Momordica charantia)is a popular cultivated vegetable in Asian and African countries.To reveal the characteristics of the genomic structure,evolutionary trajectory,and genetic basis underlying the domestication of bitter gourd,we performed whole-genome sequencing of the cultivar Dali-11 and the wild small-fruited line TR and resequencing of 187 bitter gourd germplasms from 16 countries.The major gene clusters(Bi clusters)for the biosynthesis of cucurbitane triterpenoids,which confer a bitter taste,are highly conserved in cucumber,melon,and watermelon.Comparative analysis among cucurbit genomes revealed that the Bi cluster involved in cucurbitane triterpenoid biosynthesis is absent in bitter gourd.Phylogenetic analysis revealed that the TR group,including 21 bitter gourd germplasms,may belong to a new species or subspecies independent from M.charantia.Furthermore,we found that the remaining 166 M.charantia germplasms are geographically differentiated,and we identified 710,412,and 290 candidate domestication genes in the South Asia,Southeast Asia,and China populations,respectively.This study provides new insights into bitter gourd genetic diversity and domestication and will facilitate the future genomics-enabled improvement of bitter gourd.
基金supported by the Natural Science Foundation of Inner Mongolia,China(grant nos.2022MS05011,2020LH01006,and 2022FX02)the National Natural Science Foundation of China(grant nos.52261041 and 51961032)+1 种基金the Major Science and Technology Project of Inner Mongolia(grant no.2021ZD0029)the Fundamental Research Funds for Inner Mongolia University of Science&Technology(grant no.2023QNJS119).
文摘High-entropy alloys(HEAs)are a promising solution for large-scale hydrogen storage(H-storage)and are therefore receiving increasing attention from the materials science community.In this study,we systematically investigated the microstructures and H-storage properties of V_(35)Ti_(35)Cr_(10) Fe_(10)M_(10)(M=Mn,Co,Sc,or Ni)HEAs prepared by arcmelting.The cast HEAs were found to be nanocrystalline.The crystal lattice parameters and hydrogen absorption energies of the alloys were calculated using density functional theory(DFT)calculations.The alloys can be fully activated in just one cycle of hydrogen absorption/desorption under mild conditions,after which they reach hydrogen absorption saturation in approximately 100 s at ambient temperature.The hydrogenation kinetics of the HEAs are approximately five times higher than that of conventional solid-solution alloys with a body-centered cubic(BCC)structure.By performing in-situ hydriding differential scanning calorimetry in combination with DFT calculations,we revealed that the alloys are more susceptible to hydrogenation than traditional BCC structural alloys.The H-storage capacity of V_(35)Ti_(35)Cr_(10) Fe_(10)M_(10) alloys at ambient temperature was higher than that of HEAs reported in the literature.Quasi-in-situ X-ray diffraction characterization of the HEAs’hydrogenation revealed a phase transition process from a BCC to facecentered cubic,passing through a pseudo-BCC structure.Our work introduces a new perspective for designing alloys with ultrafast hydrogen absorption kinetics and high capacity for large-scale,room-temperature-applicable H-storage.
基金This work was supported by the National Natural Science Foundation of China(52125202,21908110,U2004209)the Natural Science Foundation of Jiangsu Province(BK20190479)the Fundamental Research Funds for the Central Universities(30922010707).
文摘Supramolecular chemistry during the synthesis of carbon-nitrogen-based materials has recently experienced a renaissance in the arena of photocatalysis and electrocatalysis.In this review,we start with the discussion of supramolecular assemblies-derived carbon-nitrogen-based materials’regulation from the aspect of morphology,chemical composition,and micro/nanostructural control.Afterwards the recent advances of these materials in energy and environment related applications,including degradation of pollutants,water splitting,oxygen reduction reactions,CO_(2) reduction reactions along with organic synthesis are summarized.The correlations between the structural features and physicochemical properties of the carbonnitrogen-based materials and the specific catalytic activity are discussed in depth.By highlighting the opportunities and challenges of supramolecular assembly strategies,we attempt an outlook on possible future developments for highly efficient carbon-based photo/electrocatalysts.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 61275099 and 6 1671094) and the Natural Science foundation of Chongqing Science and Technology Commission (No, CSTC2015JCYJA40032).
文摘Super-resolution (SR) is a widely used tech- nology that increases image resolution using algorithmic methods. However, preserving the local edge structure and visual quality in infrared (IR) SR images is challenging because of their disadvantages, such as lack of detail, poor contrast, and blurry edges. Traditional and advanced methods maintain the quantitative measures, but they mostly fail to preserve edge and visual quality. This paper proposes an algorithm based on high frequency layer features. This algorithm focuses on the IR image edge texture in the reconstruction process. Experimental results show that the mean gradient of the IR image reconstructed by the proposed algorithm increased by 1.5, 1.4, and 1.2 times than that of the traditional algorithm based on L1- norm, L2-norm, and traditional mixed norm, respectively. The peak signal-to-noise ratio, structural similarity index, and visual effect of the reconstructed image also improved.
基金Project supported by the National Natural Science Foundation of China(Nos.61275099,61671094)the Natural Science Foundation of Chongqing Science and Technology Commission(No.CSTC2015JCYJA40032)
文摘Aiming at the disadvantages of the traditional projection onto convex sets of blurry edges and lack of image details,this paper proposes an improved projection onto convex sets(POCS) method to enhance the quality of image super-resolution reconstruction(SRR).In traditional POCS method,bilinear interpolation easily blurs the image.In order to improve the initial estimation of high-resolution image(HRI) during reconstruction of POCS algorithm,the initial estimation of HRI is obtained through iterative curvature-based interpolation(ICBI) instead of bilinear interpolation.Compared with the traditional POCS algorithm,the experimental results in subjective evaluation and objective evaluation demonstrate the effectiveness of the proposed method.The visual effect is improved significantly and image detail information is preserved better.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFB2800500National Natural Science Foundation of China,Grant/Award Numbers:62375243,61574138,61974131,62035013,62105281+2 种基金Natural Science Foundation of ZhejiangProvince, Grant/Award Numbers:LD22E010001, LR23E030002,LGJ21F050001Major Scientific Project ofZhejiang LabEngineering and PhysicalSciences Research Council (EPSRC),Grant/Award Numbers: EP/P006973/1,EP/R029075/1, EP/T028475/1, EP/V036327/1, EP/V048732/1, EP/X015300/1。
文摘The rapid development of emerging technologies observed in recent years,such as artificial intelligence, machine learning, mobile internet, big data,cloud computing, and the Internet of Everything, are generating escalatingdemands for expanding the capacity density, and speed in next-generation opticalcommunications. This poses a significant challenge to existing communicationtechniques. Within this context, the integration of near-infraredbroadband, tunable, and high-gain luminescent materials into silicon opticalcircuits or fiber architectures to transmit and modulate light shows enormouspotential for advancing next-generation communication techniques. Here, thisreview provides an overview of the recent breakthroughs in near-infrared luminescentepitaxial/colloidal quantum dots, and metal-active-center-doped materialsfor broadband optical amplifiers and tunable lasers. We also expound onefforts to enhance the bandwidth and gain of these materials-based amplifiersand lasers, exploring the challenges associate with developing ultra-broadbandand high-speed optical communication systems. Additionally, the potentialapplications in Fifth Generation Fixed Networks, integration with 5G and 6Gwireless networks, compensation for current Si electronic based CMOS forhigh computing capability, and the prospects of these light sources for nextgenerationoptoelectronic devices are discussed.