Global climate changes have created intense naturaldisasters such as typhoons, which may cause serious damage topower systems. As an emerging renewable energy resource, offshore wind power has great potential in power...Global climate changes have created intense naturaldisasters such as typhoons, which may cause serious damage topower systems. As an emerging renewable energy resource, offshore wind power has great potential in power systems resilienceenhancement with its rapid start-up capability and developmentof anti-typhoon technology. In this paper, a restoration strategyby offshore wind power considering risk is proposed to speedup the restoration process and enhance system resilience. Specifically, a failure risk model of an individual wind turbine andthen the whole wind farm is built for predicting severe weather’simpact, with focus on failure probability. Further, a quantificationmodel of resilience enhancement and risk cost, based on customerinterruption cost assessment method, is introduced. Then, a twostage optimized decision-making model is proposed to solve thescheme of offshore wind power and conventional power unitsin load restoration process. Case studies are undertaken on amodified IEEE RTS-79 system and results indicate the proposedrestoration strategy can shorten duration of restoration andreduce customers’ economic losses meanwhile ensuring systemsafety.展开更多
基金the Smart Grid Joint Foundation Program of National Natural Science Foundation of China and State Grid Corporation of China(U1866204)。
文摘Global climate changes have created intense naturaldisasters such as typhoons, which may cause serious damage topower systems. As an emerging renewable energy resource, offshore wind power has great potential in power systems resilienceenhancement with its rapid start-up capability and developmentof anti-typhoon technology. In this paper, a restoration strategyby offshore wind power considering risk is proposed to speedup the restoration process and enhance system resilience. Specifically, a failure risk model of an individual wind turbine andthen the whole wind farm is built for predicting severe weather’simpact, with focus on failure probability. Further, a quantificationmodel of resilience enhancement and risk cost, based on customerinterruption cost assessment method, is introduced. Then, a twostage optimized decision-making model is proposed to solve thescheme of offshore wind power and conventional power unitsin load restoration process. Case studies are undertaken on amodified IEEE RTS-79 system and results indicate the proposedrestoration strategy can shorten duration of restoration andreduce customers’ economic losses meanwhile ensuring systemsafety.