期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Multi-spherical interactions and mechanisms of hydrocarbon enrichment in the Southeast Asian archipelagic tectonic system
1
作者 Rixiang ZHU Hongjun WANG +9 位作者 Huajian WANG Xiaomei WANG Bo WAN Wang ZHANG Houqin ZHU Yuke liu junlai liu Qingren MENG Fang HAO Zhijun JIN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第2期566-583,共18页
Global cooling began since 50 Ma,but a warm climate was maintained in the archipelagic tectonic system in Southeast Asia where a wealth of Cenozoic oil and gas resources was formed and preserved.From the perspective o... Global cooling began since 50 Ma,but a warm climate was maintained in the archipelagic tectonic system in Southeast Asia where a wealth of Cenozoic oil and gas resources was formed and preserved.From the perspective of Earth system,this study analyzes Cenozoic tectonic activities,climatic and environmental evolution,and petroleum enrichment in Southeast Asia,and provides the following insights:(1)Subduction of oceanic plates and the extension of overlying continental lithosphere resulted in widespread volcanic eruptions as well as the formation of rift basins and shallow marine shelves,leading to complex interactions between deep tectonic processes and Earth’s surface including mountains,basins,and seas.(2)Microcontinental accretion and prolonged stay in equatorial low-latitude regions have changed trade winds into monsoons,altered ocean current pathways and flow rates,and profoundly affected rainfall and climate.(3)The archipelagic tectonic system,coupled with a hot and rainy climate,fostered tropical rainforests,mangroves,and phytoplankton,providing abundant organic matter and promoting the development of petroleum resources.(4)Combinations of rift basin development and marine transgression and regression led to an effective superposition of source-reservoir-seal combinations from multiplepetroleum systems.Rapid deep burial of organic matter and high geothermal gradients facilitated the generation and large-scale accumulation of oil and gas.(5)Multi-spherical(such as atmosphere,biosphere,hydrosphere and lithosphere)interactions on the Earth,which resulted from the convergence of multiple tectonic plates,are believed as the primary driver for exceptional enrichments of Cenozoic oil and gas resources in Southeast Asia.These understandings are significant for developing theories of oil and gas enrichment under the guidance of Earth System Science.In order to continue making significant oil and gas exploration discoveries in the deep-layers,deep-waters,and unconventional oil and gas fields of Southeast Asia,attention should be paid to the oil and gas resource effects of the collision between Australia and Sunda blocks and the high-temperature and high-rainfall climate environment,and efforts should be made to develop economic development and CO_(2)sequestration technologies for offshore CO_(2)-rich gas fields. 展开更多
关键词 Southeast Asia Archipelagic tectonic system Interactions of Earth’s spheres Oil and gas resources CENOZOIC
原文传递
Grain-size reduction of feldspar and flow of deformed granites within the Gaoligong shear zone, southwestern Yunnan, China 被引量:6
2
作者 Yanlong DONG Shuyun CAO +2 位作者 Xuemei CHENG junlai liu Hanchen CAO 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第9期1379-1398,共20页
Mineral deformation and rock flow mechanism in the lithosphere are related to the rheological behavior and weakening mechanism of the continent. Natural deformation behaviors of feldspars are not well understood due t... Mineral deformation and rock flow mechanism in the lithosphere are related to the rheological behavior and weakening mechanism of the continent. Natural deformation behaviors of feldspars are not well understood due to the complexity of their mineral compositions, crystal structures, as well as changing deformation conditions. The refined microstructure,fabric and composition of major minerals in the deformed granitic rocks within the Gaoligong shear zone(GLGSZ), southwestern Yunnan, China, were studied. With increasing mylonitization, two fabric types of end-members have been distinguished(type-I banded granitic mylonite and type-II banded ultramylonite). The two types of deformed granitic rocks have the same mineral assemblage, but different mineral modes. The type-I banded granitic mylonite has a greater proportion of K-feldspar(mostly present as porphyroclasts)>plagioclase>quartz±biotite, however, the type-II banded ultramylonite has a greater proportion of fine-grained plagioclase>K-feldspar>quartz±biotite. The crystallographic preferred orientation(CPO) patterns of quartz combined with two-feldspar geothermometer, confirm that the quartz grains in the type-I and type-II granitic rock have undergone high-temperature dislocation creep deformation. The K-feldspar grains in the matrix of type-II banded ultramylonite show a dominant(100)[010] slip system with dislocation creep recrystallization, while the fine-grained plagioclase grains present a weak CPO pattern with superplastic flow. The K-feldspar porphyroclasts show grain-size reduction associated with mineral composition and fabric transformation. The myrmekite formation with the fine-grained neocrystallization of plagioclase and quartz significally replaced the K-feldspar porphyroclasts. Finally, the fine-grained neocrystallization plagioclases were formed further into the high strain localized ultramylonites with superplastic flow. 展开更多
关键词 FELDSPAR GRAIN-SIZE REDUCTION EBSD fabric Fluid Myrmekite MYLONITE Ultramylonite
原文传递
The characteristics of the structure, strain and kinematic vorticity of the Wulian detachment fault zone, Shandong Peninsula, China 被引量:4
3
作者 Jinlong NI junlai liu +2 位作者 Yujie SUN Xiaoxiao SHI Shen LI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第9期1399-1415,共17页
As one of the vital tectonic units of the Wulian Metamorphic Core Complex(MCC), the Wulian detachment fault zone(WDFZ), which developed in the Jiaodong peninsula, separates the lower plate of the ultrahigh pressure(UH... As one of the vital tectonic units of the Wulian Metamorphic Core Complex(MCC), the Wulian detachment fault zone(WDFZ), which developed in the Jiaodong peninsula, separates the lower plate of the ultrahigh pressure(UHP) metamorphic rocks in the Sulu orogenic belt from the upper plate of the early Cretaceous Zhucheng basin and the basin basement. The fault zone generally strikes NNE with a dip in the west along the southern portion of the MCC and strikes NE with a dip in the WNWalong the northern portion. The fault zone displays a wavy-tile-shaped extension on the plane, principally composed of the fault breccias and mylonite and transits downward to the mylonitic gneiss. As a whole, the detachment fault zone shows a top-towest or a WNW extension. By calculating the harmonic mean, we obtain a Flynn index K of 0.98–2.0, and the mean value is approximately 1.35 in the fault zone. According to the polar Mohr construction, the extensional crenulation cleavage, the RS/θ,and the quartz C-axial fabric methods, we acquire mean kinematic vorticity values of 0.64–0.97, 0.76–0.93, 0.6–0.92, and 0.63–0.98 with mean values of 0.83, 0.80, 0.78 and 0.86, respectively, for mylonite and promylonite. The strain measurement results and the kinematic vorticity values indicate that the WDFZ is a normal ductile shear zone developed in the extensional setting.The kinematic track shows that the kinematic vorticity value decreases gradually from the NW to the SE as a whole. A simple shear dominates in the middle and upper parts of the shear zone, which is reflected by a higher vorticity value(>0.75, up to 0.98),a low thinning rate and a lower K value. In contrast, toward the footwall, the pure shear is increased significantly, showing a lower vorticity value(<0.70, low to 0.64), a relatively high thinning rate and a higher K value. Combined with the geotectonic background, the development and evolution of the WDFZ should respond to lithospheric thinning and the destruction of the North China Craton(NCC). As a result, the WDFZ can be defined as a thinning normal shear zone developed in the extension tectonic setting and the combined result of the simple shear caused by the crust extension and pure shear led by the rapid uplift of the footwall and magmatic upwelling. 展开更多
关键词 Wulian STRAIN intensity Kinematic VORTICITY MYLONITE DETACHMENT fault zone
原文传递
Metamorphic, deformation, fluids and geological significance of low-temperature retrograde mylonites of Diancangshan metamorphic massif along Ailaoshan-Red River strike-slip fault zone, Yunnan, China 被引量:4
4
作者 Xuemei CHENG Shuyun CAO +4 位作者 Junyu LI Zunpu YU Yanlong DONG Meixia LV junlai liu 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第8期1023-1041,共19页
Diancangshan metamorphic massif is one of the four metamorphic massifs developed along the Ailaoshan-Red River strike-slip fault zone, Yunnan, China. It has experienced multi-stage metamorphism and deformation, especi... Diancangshan metamorphic massif is one of the four metamorphic massifs developed along the Ailaoshan-Red River strike-slip fault zone, Yunnan, China. It has experienced multi-stage metamorphism and deformation, especially since the late Oligocene it widely suffered high-temperature ductile shear deformation and exhumation of the metamorphic rocks from the deep crust to the shallow surface. Based on the previous research and geological field work, this paper presents a detailed study on deformation and metamorphism, and exhumation of deep metamorphic rocks within the Diancangshan metamorphic massif,especially focusing on the low-temperature overprinted retrogression metamorphism and deformation of mylonitic rocks. With the combinated experimental techniques of optical microscope, electron backscatter diffraction attachmented on field-emission scanning electron microscopy and cathodoluminescence, our contribution reports the microstructure, lattice preferred orientations of the deformed minerals, and the changes of mineral composition phases of the superposition low-temperature retrograde mylonites. All these results indicate that:(1) Diancangshan deep metamorphic rock has experienced early high-temperature leftlateral shear deformation and late extension with rapid exhumation, the low-temperature retrogression metamorphism and deformation overprinted the high-temperature metamorphism, and the high-temperature microstructure and texture are in part or entirely altered by subsequent low-temperature shearing;(2) the superposition of low-temperature deformation-metamorphism occurs at the ductile-brittle transition; and(3) the fluid is quite active during the syn-tectonic shearing overprinted lowtemperature deformation and metamorphism. The dynamic recrystallization and/or fractures to micro-fractures result in the strongly fine-grained of the main minerals, and present strain localization in micro-domians, such as micro-shear zones in the mylonites. It is often accompanied by the decrease of rock strength and finally influences the rheology of the whole rock during further deformation and exhumation of the Diancangshan massif. 展开更多
关键词 变形岩石 低温度 糜棱岩 地质 液体 云南 中国 扫描电子显微镜
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部