In order to reduce the waste of resources and environmental pollution caused by excessive application of chemical fertilizers, improve the utilization rate of fertilizers, and promote the large-scale and high-quality ...In order to reduce the waste of resources and environmental pollution caused by excessive application of chemical fertilizers, improve the utilization rate of fertilizers, and promote the large-scale and high-quality development of the Chinese rose industry. In this experiment, corn stover biochar, phosphoric acid modified biochar and organic fertilizer were used as test materials, and the effects of mixed application of modified biochar and organic fertilizer on the growth and development of Chinese rose as well as soil physicochemical properties were investigated by using the method of pot planting test. The results showed that modified biochar with organic fertilizer had the most significant effect on the enhancement of soil pH, organic matter content and soil carbon-to-nitrogen ratio. After 120 d of planting, modified biochar with organic fertilizer had the most significant effect on the enhancement of plant height and crown width of Chinese rose;both organic fertilizer and modified biochar with organic fertilizer significantly increased the chlorophyll content of Chinese rose. The number of flowers and the number of branches were the highest in the modified biochar with organic fertilizer treatment. In conclusion, the application of modified biochar with organic fertilizer can better improve the soil pH, and increase the soil organic matter content and carbon-to-nitrogen ratio to change the biological traits of Chinese rose. The results of this study provide a theoretical basis for the reduction of chemical fertilizers and the resource utilization of agricultural wastes and guarantee the sustainable development of the cut flower industry.展开更多
The paper studies stochastic dynamics of a two-degree-of-freedom system,where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping.While the primary mas...The paper studies stochastic dynamics of a two-degree-of-freedom system,where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping.While the primary mass is subjected to a zero-mean Gaussian white noise excitation,the main objective of this study is to maximise the efficiency of the targeted energy transfer in the system.A surrogate optimisation algorithm is proposed for this purpose and adopted for the stochastic framework.The optimisations are conducted separately for the nonlinear stiffness coefficient alone as well as for both the nonlinear stiffness and damping coefficients together.Three different optimisation cost functions,based on either energy of the system’s components or the dissipated energy,are considered.The results demonstrate some clear trends in values of the nonlinear energy sink coefficients and show the effect of different cost functions on the optimal values of the nonlinear system’s coefficients.展开更多
Entering the 21st century, China’s economic development has reached new heights and the country has ascended to the world’s second largest economy. The 20 year unrelenting development in China also stimulates income...Entering the 21st century, China’s economic development has reached new heights and the country has ascended to the world’s second largest economy. The 20 year unrelenting development in China also stimulates income growth. The increased disposable income enables an ordinary Chinese family vehicle ownership which was unthinkable two decades ago. The most populous country has started a love affair with automobile just like in the United States. Annual automobile sales in China rose from 2.1 million in 2000 to 18.1 million in 2010 with a yearly growth rate of 24.3%, which spurs the vehicle ownership increase from 18.1 million in 2000 to 78.8 million in 2010, a growth rate of 15.9% The unprecedented motorization development in China is making a huge impact on all aspects of society, including negative consequences that cannot be ignored. Traffic congestion, air pollution, and dependency on imported oil are huge emerging problems threatening Chinese sustainable development. Although these problems occurred and still exist in many other developed and developing countries, they are more acute in China today. By collecting and analyzing the massive data from various sources, this paper explores the relationship between economic development and level of mobility by studying the historical developments from several developed counties and discusses the key issues in Chinese motorization development. The objective of the study is to predict the future level of motorization and its potential impacts.展开更多
Based on the D-H notation, kinematics model and inverse kinematics model of 6R industrial robots are established. Using graphical method, the boundary curve equations of the 6R industrial robot workspace are obtained....Based on the D-H notation, kinematics model and inverse kinematics model of 6R industrial robots are established. Using graphical method, the boundary curve equations of the 6R industrial robot workspace are obtained. Based on the prescribed workspace, the D-H parameter optimization method of 6R industrial robots is proposed. Using the genetic algorithm to determine the structural dimensions of a 6R robot, we make sure that its workspace can exactly contain the prescribed workspace. This method can be used to reduce the overall size of the robot, save materials and reduce the power consumption of the robot during its work time.展开更多
Neurological electronic skin(E-skin)can process and transmit information in a distributed manner that achieves effective stimuli perception,holding great promise in neuroprosthetics and soft robotics.Neurological E-sk...Neurological electronic skin(E-skin)can process and transmit information in a distributed manner that achieves effective stimuli perception,holding great promise in neuroprosthetics and soft robotics.Neurological E-skin with multifunctional perception abilities can enable robots to precisely interact with the complex surrounding environment.However,current neurological E-skins that possess tactile,thermal,and visual perception abilities are usually prepared with rigid materials,bringing difficulties in realizing biologically synapse-like softness.Here,we report a soft multifunctional neurological E-skin(SMNE)comprised of a poly(3-hexylthiophene)(P3HT)nanofiber polymer semiconductor-based stretchable synaptic transistor and multiple soft artificial sensory receptors,which is capable of effectively perceiving force,thermal,and light stimuli.The stretchable synaptic transistor can convert electrical signals into transient channel currents analogous to the biological excitatory postsynaptic currents.And it also possesses both short-term and long-term synaptic plasticity that mimics the human memory system.By integrating a stretchable triboelectric nanogenerator,a soft thermoelectric device,and an elastic photodetector as artificial receptors,we further developed an SMNE that enables the robot to make precise actions in response to various surrounding stimuli.Compared with traditional neurological E-skin,our SMNE can maintain the softness and adaptability of biological synapses while perceiving multiple stimuli including force,temperature,and light.This SMNE could promote the advancement of E-skins for intelligent robot applications.展开更多
Galloping based piezoelectric energy harvester is a kind of micro-environmental energy harvesting device based on flowinduced vibrations.A novel tristable galloping-based piezoelectric energy harvester is constructed ...Galloping based piezoelectric energy harvester is a kind of micro-environmental energy harvesting device based on flowinduced vibrations.A novel tristable galloping-based piezoelectric energy harvester is constructed by introducing a nonlinear magnetic force on the traditional galloping-based piezoelectric energy harvester.Based on Euler-Bernoulli beam theory and Kirchhoff’s law,the corresponding aero-electromechanical model is proposed and validated by a series of wind tunnel experiments.The parametric study is performed to analyse the response of the tristable galloping-based piezoelectric energy harvester.Numerical results show that comparing with the galloping-based piezoelectric energy harvester,the mechanism of the tristable galloping-based piezoelectric energy harvester is more complex.With the increase of a wind speed,the vibration of the bluff body passes through three branches:intra-well oscillations,chaotic oscillations,and inter-well oscillations.The threshold wind speed of the presented harvester for efficiently harvesting energy is 1.0 m/s,which is decreased by 33% compared with the galloping-based piezoelectric energy harvester.The maximum output power of the presented harvester is 0.73 mW at 7.0 m/s wind speed,which is increased by 35.3%.Compared with the traditional galloping-based piezoelectric energy harvester,the presented tristable galloping-based piezoelectric energy harvester has a better energy harvesting performance from flow-induced vibrations.展开更多
Intrahepatic cholestasis of pregnancy(ICP)is a cholestatic disorder with potentially deleterious consequences for fetuses.Although a clear correlation between the elevated levels of maternal serum bile acids and defic...Intrahepatic cholestasis of pregnancy(ICP)is a cholestatic disorder with potentially deleterious consequences for fetuses.Although a clear correlation between the elevated levels of maternal serum bile acids and deficient fetal outcome has been established in clinical practice,the underlying mechanisms remain elusive.Herein,we report that bile acids induce NF-κB pathway activation via G protein-coupled bile acid receptor 1(Gpbar1),with consequent upregulation of inflammatory genes in trophoblasts,leading to aberrant leukocyte infiltration and inflammation in placenta.Ursodeoxycholic acid(UDCA),a drug used clinically to treat ICP,competes with other bile acids for binding with Gpbar1 and thus inhibits bile acid-induced inflammatory response in trophoblasts and improves fetal survival in pregnant rats with obstructive cholestasis.Notably,inhibition of NF-κB by andrographolide is more effective than UDCA in benefiting placentas and fetuses.Thus,anti-inflammation therapy targeting Gpbar1/NF-κB pathway could be effective in suppressing bile acid-induced inflammation and alleviating ICP-associated fetal disorders.展开更多
Designing earth-abundant electrocatalysts with high performance towards water oxidation is highly decisive for the sustainable energy technologies. This study develops a facile natural corrosion approach to fabricate ...Designing earth-abundant electrocatalysts with high performance towards water oxidation is highly decisive for the sustainable energy technologies. This study develops a facile natural corrosion approach to fabricate nickel-iron hydroxides for water oxidation. The resulted electrode demonstrates an outstanding activity and stability with an overpotential of 275 mV to deliver 10 mA·cm^(−2). Experimental and theoretical results suggest the corrosion-induced formation of hydroxides and their transformation to oxyhydroxides would account for this excellent performance. This work not only provides an interesting corrosion approach for the fabrication of excellent water oxidation electrode, but also bridges traditional corrosion engineering and novel materials fabrication, which would offer some insights in the innovative principles for nanomaterials and energy technologies.展开更多
In this work,a surfactant,benzalkonium chloride(BAC),was used to study its effects on both the growth of Chlorella vulgaris and the corrosion caused by its biofilm.Experimental results indicated that BAC at a low conc...In this work,a surfactant,benzalkonium chloride(BAC),was used to study its effects on both the growth of Chlorella vulgaris and the corrosion caused by its biofilm.Experimental results indicated that BAC at a low concentration of 3 mg/L suppressed C.vulgaris growth and achieved 81%corrosion inhibition based on weight loss reduction.The inhibition effects increased when the BAC dosage was increased.At 30 mg/L,the corrosion inhibition increased to 95%.Electrochemical results supported surface pitting analysis,weight loss results data and confirmed the corrosion inhibition.展开更多
Gas and water distribution is discontinuous in tight gas reservoirs,and a quantitative understanding of the factors controlling the scale and distribution of effective reservoirs is important for natural gas explorati...Gas and water distribution is discontinuous in tight gas reservoirs,and a quantitative understanding of the factors controlling the scale and distribution of effective reservoirs is important for natural gas exploration.We used geological and geophysical explanation results,dynamic and static well test data,interference well test and static pressure test to calculate the distribution and characteristics of tight gas reservoirs in the H_(8) Member of the Shihezi Formation,Sulige gas field,Ordos Basin,northwest China.Our evaluation system examines the scale,physical properties,gas-bearing properties,and other reservoir features,and results in classification of effective reservoirs into types Ⅰ,Ⅱ,and Ⅲ that differ greatly in size,porosity,permeability,and saturation.The average thickness,length,and width of type Ⅰ effective reservoirs are 2.89,808,and 598 m,respectively,and the porosity is>10.0%,permeability is>1010^(–3)µm^(2),and average gas saturation is>60%.Compared with conventional gas reservoirs,tight gas effective reservoirs are small-scale and have low gas saturation.Our results show that the scale of the sedimentary system controls the size of the dominant microfacies in which tight gas effective reservoirs form.The presence of different types of interbeds hinders the connectivity of effective sand body reservoirs.The gas source conditions and pore characteristics of the reservoirs control sand body gas filling and reservoir formation.The physical properties and structural nature of the reservoirs control gas–water separation and the gas contents of effective reservoirs.The results are beneficial for the understanding of gas reservoir distribution in the whole Ordos Basin and other similar basins worldwide.展开更多
Tetrakis hydroxymethyl phosphonium sulfate(THPS) was enhanced by a 14-mer Peptide A, with its core12-mer sequence mimicking part of Equinatoxin II protein, in the mitigation of sulfate reducing Desulfovibrio ferrophil...Tetrakis hydroxymethyl phosphonium sulfate(THPS) was enhanced by a 14-mer Peptide A, with its core12-mer sequence mimicking part of Equinatoxin II protein, in the mitigation of sulfate reducing Desulfovibrio ferrophilus MIC(microbiologically influenced corrosion) of X80 carbon steel. Results proved that50 ppm(w/w) THPS was sufficient to mitigate the D. ferrophilus biofilm, and its very agressive MIC(19.7mg/cm^(2) in 7 days or 1.31 mm/a), but not 20 ppm THPS. To achieve effective mitigation at a low dosage of THPS, biofilm-dispersing Peptide A was added to 20 ppm THPS in the culture medium. Sessile cell counts were reduced by 2-log and 4-log after enhancement by 10 ppb and 100 ppb Peptide A, respectively. Enhancement efficiency(further reduction in corrosion rate) reached 69% for 10 ppb Peptide A and 83% for100 ppb Peptide A compared with 20 ppm THPS alone treatment, indicating that Peptide A was a good biocide enhancer for THPS.展开更多
Dear Editor,Gut associated lymphoid tissue(GALT)is the principal site where human immunodeficiency virus 1(HIV-1)replicates.CD4^(+) T cells residing in GALT are predominant targets of HIV-1 during the acute phase of i...Dear Editor,Gut associated lymphoid tissue(GALT)is the principal site where human immunodeficiency virus 1(HIV-1)replicates.CD4^(+) T cells residing in GALT are predominant targets of HIV-1 during the acute phase of infection.CD4^(+) T cells expressing a high level of gut-homing receptor integrin α4β7 are more susceptible to productive infection by HIV-1.展开更多
文摘In order to reduce the waste of resources and environmental pollution caused by excessive application of chemical fertilizers, improve the utilization rate of fertilizers, and promote the large-scale and high-quality development of the Chinese rose industry. In this experiment, corn stover biochar, phosphoric acid modified biochar and organic fertilizer were used as test materials, and the effects of mixed application of modified biochar and organic fertilizer on the growth and development of Chinese rose as well as soil physicochemical properties were investigated by using the method of pot planting test. The results showed that modified biochar with organic fertilizer had the most significant effect on the enhancement of soil pH, organic matter content and soil carbon-to-nitrogen ratio. After 120 d of planting, modified biochar with organic fertilizer had the most significant effect on the enhancement of plant height and crown width of Chinese rose;both organic fertilizer and modified biochar with organic fertilizer significantly increased the chlorophyll content of Chinese rose. The number of flowers and the number of branches were the highest in the modified biochar with organic fertilizer treatment. In conclusion, the application of modified biochar with organic fertilizer can better improve the soil pH, and increase the soil organic matter content and carbon-to-nitrogen ratio to change the biological traits of Chinese rose. The results of this study provide a theoretical basis for the reduction of chemical fertilizers and the resource utilization of agricultural wastes and guarantee the sustainable development of the cut flower industry.
基金funding for this work from NSF-CMMI 2009270 and EPSRC EP/V034391/1.
文摘The paper studies stochastic dynamics of a two-degree-of-freedom system,where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping.While the primary mass is subjected to a zero-mean Gaussian white noise excitation,the main objective of this study is to maximise the efficiency of the targeted energy transfer in the system.A surrogate optimisation algorithm is proposed for this purpose and adopted for the stochastic framework.The optimisations are conducted separately for the nonlinear stiffness coefficient alone as well as for both the nonlinear stiffness and damping coefficients together.Three different optimisation cost functions,based on either energy of the system’s components or the dissipated energy,are considered.The results demonstrate some clear trends in values of the nonlinear energy sink coefficients and show the effect of different cost functions on the optimal values of the nonlinear system’s coefficients.
文摘Entering the 21st century, China’s economic development has reached new heights and the country has ascended to the world’s second largest economy. The 20 year unrelenting development in China also stimulates income growth. The increased disposable income enables an ordinary Chinese family vehicle ownership which was unthinkable two decades ago. The most populous country has started a love affair with automobile just like in the United States. Annual automobile sales in China rose from 2.1 million in 2000 to 18.1 million in 2010 with a yearly growth rate of 24.3%, which spurs the vehicle ownership increase from 18.1 million in 2000 to 78.8 million in 2010, a growth rate of 15.9% The unprecedented motorization development in China is making a huge impact on all aspects of society, including negative consequences that cannot be ignored. Traffic congestion, air pollution, and dependency on imported oil are huge emerging problems threatening Chinese sustainable development. Although these problems occurred and still exist in many other developed and developing countries, they are more acute in China today. By collecting and analyzing the massive data from various sources, this paper explores the relationship between economic development and level of mobility by studying the historical developments from several developed counties and discusses the key issues in Chinese motorization development. The objective of the study is to predict the future level of motorization and its potential impacts.
文摘Based on the D-H notation, kinematics model and inverse kinematics model of 6R industrial robots are established. Using graphical method, the boundary curve equations of the 6R industrial robot workspace are obtained. Based on the prescribed workspace, the D-H parameter optimization method of 6R industrial robots is proposed. Using the genetic algorithm to determine the structural dimensions of a 6R robot, we make sure that its workspace can exactly contain the prescribed workspace. This method can be used to reduce the overall size of the robot, save materials and reduce the power consumption of the robot during its work time.
基金supported by the National Natural Science Foundation of China(No.62074137)the Science and Technology Research and Development Program Joint Fund of Henan(No.232301420033)the China Postdoctoral Science Foundation(Nos.2021TQ0288 and 2022M712852).
文摘Neurological electronic skin(E-skin)can process and transmit information in a distributed manner that achieves effective stimuli perception,holding great promise in neuroprosthetics and soft robotics.Neurological E-skin with multifunctional perception abilities can enable robots to precisely interact with the complex surrounding environment.However,current neurological E-skins that possess tactile,thermal,and visual perception abilities are usually prepared with rigid materials,bringing difficulties in realizing biologically synapse-like softness.Here,we report a soft multifunctional neurological E-skin(SMNE)comprised of a poly(3-hexylthiophene)(P3HT)nanofiber polymer semiconductor-based stretchable synaptic transistor and multiple soft artificial sensory receptors,which is capable of effectively perceiving force,thermal,and light stimuli.The stretchable synaptic transistor can convert electrical signals into transient channel currents analogous to the biological excitatory postsynaptic currents.And it also possesses both short-term and long-term synaptic plasticity that mimics the human memory system.By integrating a stretchable triboelectric nanogenerator,a soft thermoelectric device,and an elastic photodetector as artificial receptors,we further developed an SMNE that enables the robot to make precise actions in response to various surrounding stimuli.Compared with traditional neurological E-skin,our SMNE can maintain the softness and adaptability of biological synapses while perceiving multiple stimuli including force,temperature,and light.This SMNE could promote the advancement of E-skins for intelligent robot applications.
基金supported by the National Natural Science Foundation of China(Grants 51606171,51977196,and 11802237)China Postdoctoral Science Foundation(Grant 2019M652565).
文摘Galloping based piezoelectric energy harvester is a kind of micro-environmental energy harvesting device based on flowinduced vibrations.A novel tristable galloping-based piezoelectric energy harvester is constructed by introducing a nonlinear magnetic force on the traditional galloping-based piezoelectric energy harvester.Based on Euler-Bernoulli beam theory and Kirchhoff’s law,the corresponding aero-electromechanical model is proposed and validated by a series of wind tunnel experiments.The parametric study is performed to analyse the response of the tristable galloping-based piezoelectric energy harvester.Numerical results show that comparing with the galloping-based piezoelectric energy harvester,the mechanism of the tristable galloping-based piezoelectric energy harvester is more complex.With the increase of a wind speed,the vibration of the bluff body passes through three branches:intra-well oscillations,chaotic oscillations,and inter-well oscillations.The threshold wind speed of the presented harvester for efficiently harvesting energy is 1.0 m/s,which is decreased by 33% compared with the galloping-based piezoelectric energy harvester.The maximum output power of the presented harvester is 0.73 mW at 7.0 m/s wind speed,which is increased by 35.3%.Compared with the traditional galloping-based piezoelectric energy harvester,the presented tristable galloping-based piezoelectric energy harvester has a better energy harvesting performance from flow-induced vibrations.
基金supported by grants from the 973 Program(2014CB541905)the National Natural Science Foundation of China(31525016,31471309,31190061)+2 种基金Personalized Medicines-Molecular Signature-based Drug Discovery and Development,the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA12000000)the Science and Technology Commission of Shanghai Municipality(11JC1414200),SKLCB(KF2012002)the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘Intrahepatic cholestasis of pregnancy(ICP)is a cholestatic disorder with potentially deleterious consequences for fetuses.Although a clear correlation between the elevated levels of maternal serum bile acids and deficient fetal outcome has been established in clinical practice,the underlying mechanisms remain elusive.Herein,we report that bile acids induce NF-κB pathway activation via G protein-coupled bile acid receptor 1(Gpbar1),with consequent upregulation of inflammatory genes in trophoblasts,leading to aberrant leukocyte infiltration and inflammation in placenta.Ursodeoxycholic acid(UDCA),a drug used clinically to treat ICP,competes with other bile acids for binding with Gpbar1 and thus inhibits bile acid-induced inflammatory response in trophoblasts and improves fetal survival in pregnant rats with obstructive cholestasis.Notably,inhibition of NF-κB by andrographolide is more effective than UDCA in benefiting placentas and fetuses.Thus,anti-inflammation therapy targeting Gpbar1/NF-κB pathway could be effective in suppressing bile acid-induced inflammation and alleviating ICP-associated fetal disorders.
基金This work is financially supported by the National Natural Science Foundation of China(No.22075092)China Postdoctoral Science Foundation(No.2018M642810)the Program for HUST Academic Frontier Youth Team(No.2018QYTD15)。
文摘Designing earth-abundant electrocatalysts with high performance towards water oxidation is highly decisive for the sustainable energy technologies. This study develops a facile natural corrosion approach to fabricate nickel-iron hydroxides for water oxidation. The resulted electrode demonstrates an outstanding activity and stability with an overpotential of 275 mV to deliver 10 mA·cm^(−2). Experimental and theoretical results suggest the corrosion-induced formation of hydroxides and their transformation to oxyhydroxides would account for this excellent performance. This work not only provides an interesting corrosion approach for the fabrication of excellent water oxidation electrode, but also bridges traditional corrosion engineering and novel materials fabrication, which would offer some insights in the innovative principles for nanomaterials and energy technologies.
基金supported by National Key Research and Development Program of China(2018YFF0215002)Graduates’Innovation Fund of Huazhong University of Science and Technology(5003013044)+2 种基金The Open Fund of Hubei Key Laboratory of Materials Chemistry and Service Failure(2017)Key Laboratory of Materials Chemistry for Energy Conversion and Storage,Ministry of Education(2018)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.18KJB530004)。
文摘In this work,a surfactant,benzalkonium chloride(BAC),was used to study its effects on both the growth of Chlorella vulgaris and the corrosion caused by its biofilm.Experimental results indicated that BAC at a low concentration of 3 mg/L suppressed C.vulgaris growth and achieved 81%corrosion inhibition based on weight loss reduction.The inhibition effects increased when the BAC dosage was increased.At 30 mg/L,the corrosion inhibition increased to 95%.Electrochemical results supported surface pitting analysis,weight loss results data and confirmed the corrosion inhibition.
基金financially supported by the PetroChina Innovation Foundation(No.2019D-5007-0210)National Natural Science Foundation of China(Grant Nos.51904050、41902153)+2 种基金the Chongqing Natural Science Foundation Project(Nos.cstc2019jcyjmsxmX0725、0457)Open Fund of Engineering Research Center of Development and Management for Low to Ultra-Low Permeability Oil&Gas Reservoirs in West China,Ministry of Education(KFJJ-XB-2020-4)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJQN201901531).
文摘Gas and water distribution is discontinuous in tight gas reservoirs,and a quantitative understanding of the factors controlling the scale and distribution of effective reservoirs is important for natural gas exploration.We used geological and geophysical explanation results,dynamic and static well test data,interference well test and static pressure test to calculate the distribution and characteristics of tight gas reservoirs in the H_(8) Member of the Shihezi Formation,Sulige gas field,Ordos Basin,northwest China.Our evaluation system examines the scale,physical properties,gas-bearing properties,and other reservoir features,and results in classification of effective reservoirs into types Ⅰ,Ⅱ,and Ⅲ that differ greatly in size,porosity,permeability,and saturation.The average thickness,length,and width of type Ⅰ effective reservoirs are 2.89,808,and 598 m,respectively,and the porosity is>10.0%,permeability is>1010^(–3)µm^(2),and average gas saturation is>60%.Compared with conventional gas reservoirs,tight gas effective reservoirs are small-scale and have low gas saturation.Our results show that the scale of the sedimentary system controls the size of the dominant microfacies in which tight gas effective reservoirs form.The presence of different types of interbeds hinders the connectivity of effective sand body reservoirs.The gas source conditions and pore characteristics of the reservoirs control sand body gas filling and reservoir formation.The physical properties and structural nature of the reservoirs control gas–water separation and the gas contents of effective reservoirs.The results are beneficial for the understanding of gas reservoir distribution in the whole Ordos Basin and other similar basins worldwide.
基金financial support from Saudi Aramcothe China Scholarship Council for studying in the USA+2 种基金supports by the National Key Research and Development Program of China (No. 2018YFF0215002)Key Laboratory of Materials Chemistry for Energy Conversion and Storage Ministry of Education (2018)The Foundation of Hubei Key Laboratory of Materials Chemistry and Service Failure (2017)。
文摘Tetrakis hydroxymethyl phosphonium sulfate(THPS) was enhanced by a 14-mer Peptide A, with its core12-mer sequence mimicking part of Equinatoxin II protein, in the mitigation of sulfate reducing Desulfovibrio ferrophilus MIC(microbiologically influenced corrosion) of X80 carbon steel. Results proved that50 ppm(w/w) THPS was sufficient to mitigate the D. ferrophilus biofilm, and its very agressive MIC(19.7mg/cm^(2) in 7 days or 1.31 mm/a), but not 20 ppm THPS. To achieve effective mitigation at a low dosage of THPS, biofilm-dispersing Peptide A was added to 20 ppm THPS in the culture medium. Sessile cell counts were reduced by 2-log and 4-log after enhancement by 10 ppb and 100 ppb Peptide A, respectively. Enhancement efficiency(further reduction in corrosion rate) reached 69% for 10 ppb Peptide A and 83% for100 ppb Peptide A compared with 20 ppm THPS alone treatment, indicating that Peptide A was a good biocide enhancer for THPS.
基金This work was supported by grants from National Key Research and Development Program of China(2020YFA0509100)National Natural Science Foundation of China(31830112,32030024,31525016 to J.F.C,31970702,31701219 to C.D.L.)+4 种基金Program of Shanghai Academic Research Leader Research Program of the Chinese Academy of Sciences(XDA12010101)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020266)the Young Elite Scientist Sponsorship Program by CAST(2019QNRC001)National Ten Thousand Talents Program.The authors gratefully acknowledge the support of SA-SIBS scholarship program.We thank Prof.Brian Seed and Dr.Slim Sassi(Massachusetts General Hospital,Boston,USA)for providing the codon optimized MN gp120 plasmid.We thank Prof.Lu Lu and Master Miao Cao(Fudan University,Shanghai,China)for providing the plasmids expressing BG505 SOSIP.664,Furin,and PGT145 for the expression and purification of BG505 SOSIP.664 gp140 trimers.(19XD1404200)Personalized Medicines-Molecular Signature-based Drug Discovery and Development,the Strategic Priority。
文摘Dear Editor,Gut associated lymphoid tissue(GALT)is the principal site where human immunodeficiency virus 1(HIV-1)replicates.CD4^(+) T cells residing in GALT are predominant targets of HIV-1 during the acute phase of infection.CD4^(+) T cells expressing a high level of gut-homing receptor integrin α4β7 are more susceptible to productive infection by HIV-1.